hp-FEM for second moments of elliptic PDEs with stochastic data

We prove exponential rates of convergence of a class of hp Galerkin Finite Element approximations of solutions to a model tensor non-hypoelliptic equation in the unit square ! = (0, 1) which exhibit singularities on ∂! and on the diagonal ∆ = {(x, y) ∈ ! : x = y}, but are otherwise analytic in !. As we explained in the first part [6] of this work, such problems arise as deterministic second moment equations of linear, second order elliptic operator equations Au = f with Gaussian random field data f .

[1]  B. Pentenrieder Exponential convergence of hp-FEM for second moments of elliptic PDEs with stochastic data , 2009 .

[2]  M. Lemaire,et al.  Stochastic Finite Elements , 2010 .

[3]  R. Hochmuth,et al.  On the regularity of solutions of a homogeneous Dirichlet problem for a non-hypoelliptic linear partial differential operator , 1991 .

[4]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[5]  Radu Alexandru Todor,et al.  Sparse perturbation algorithms for elliptic PDE's with stochastic data , 2005 .

[6]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[7]  Christoph Schwab,et al.  Sparse finite element methods for operator equations with stochastic data , 2006 .

[8]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[9]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[10]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[11]  R. Adler The Geometry of Random Fields , 2009 .

[12]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[13]  I. Babuska,et al.  Rairo Modélisation Mathématique Et Analyse Numérique the H-p Version of the Finite Element Method with Quasiuniform Meshes (*) , 2009 .

[14]  Hans-Joachim Bungartz,et al.  Einführung in die Computergraphik - Grundlagen, geometrische Modellierung, Algorithmen , 1996, Mathematische Grundlagen der Informatik.

[15]  hp-FEM for second moments of elliptic PDEs with stochastic data: part 1: analytic regularity , 2010 .

[16]  A. Cohen On random fields , 1967 .

[17]  V. Bogachev Gaussian Measures on a , 2022 .

[18]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[19]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[20]  M. G. Duffy,et al.  Quadrature Over a Pyramid or Cube of Integrands with a Singularity at a Vertex , 1982 .

[21]  Christoph Schwab,et al.  Sparse Finite Elements for Stochastic Elliptic Problems – Higher Order Moments , 2003, Computing.

[22]  Kenneth B. Huber Department of Mathematics , 1894 .

[23]  G. Pólya,et al.  Remarks on Characteristic Functions , 1949 .

[24]  Helmut Harbrecht,et al.  A finite element method for elliptic problems with stochastic input data , 2010 .

[25]  Christoph Schwab,et al.  Sparse finite elements for elliptic problems with stochastic loading , 2003, Numerische Mathematik.

[26]  Andreas Keese,et al.  Review of Recent Developments in the Numerical Solution of Stochastic Partial Differential Equations (Stochastic Finite Elements)A , 2003 .

[27]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[28]  PAUL HOUSTON,et al.  Stabilized hp-Finite Element Methods for First-Order Hyperbolic Problems , 2000, SIAM J. Numer. Anal..

[29]  R. Lathe Phd by thesis , 1988, Nature.

[30]  P. Frauenfelder hp-Finite element methods on anisotropically, locally refined meshes in three dimensions with stochastic data , 2004 .

[31]  Eric F Darve,et al.  Author ' s personal copy A hybrid method for the parallel computation of Green ’ s functions , 2009 .

[32]  C. P. Gupta,et al.  Applications of Mathematics , 2007 .

[33]  L. Nikolova,et al.  On ψ- interpolation spaces , 2009 .

[34]  D. Griffin,et al.  Finite-Element Analysis , 1975 .

[35]  Hermann G. Matthies,et al.  Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .

[36]  Ivo Babuška,et al.  Regularity of the solution of elliptic problems with piecewise analytic data. Part 1. Boundary value problems for linear elliptic equation of second order , 1988 .

[37]  I. J. Schoenberg Metric spaces and completely monotone functions , 1938 .

[38]  Will Light,et al.  Approximation Theory in Tensor Product Spaces , 1985 .

[39]  Carl W David,et al.  Stirling's Approximation , 2007 .

[40]  G. Prato An Introduction to Infinite-Dimensional Analysis , 2006 .

[41]  P. Revesz Interpolation and Approximation , 2010 .

[42]  Reinhard Hochmuth AN INHOMOGENEOUS DIRICHLET PROBLEM FOR A NON-HYPOELLIPTIC LINEAR PARTIAL DIFFERENTIAL OPERATOR , 1996 .