hp-FEM for second moments of elliptic PDEs with stochastic data
暂无分享,去创建一个
[1] B. Pentenrieder. Exponential convergence of hp-FEM for second moments of elliptic PDEs with stochastic data , 2009 .
[2] M. Lemaire,et al. Stochastic Finite Elements , 2010 .
[3] R. Hochmuth,et al. On the regularity of solutions of a homogeneous Dirichlet problem for a non-hypoelliptic linear partial differential operator , 1991 .
[4] Feller William,et al. An Introduction To Probability Theory And Its Applications , 1950 .
[5] Radu Alexandru Todor,et al. Sparse perturbation algorithms for elliptic PDE's with stochastic data , 2005 .
[6] George G. Lorentz,et al. Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.
[7] Christoph Schwab,et al. Sparse finite element methods for operator equations with stochastic data , 2006 .
[8] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[9] Raúl Tempone,et al. Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..
[10] C. Schwab. P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .
[11] R. Adler. The Geometry of Random Fields , 2009 .
[12] L. Hörmander. The analysis of linear partial differential operators , 1990 .
[13] I. Babuska,et al. Rairo Modélisation Mathématique Et Analyse Numérique the H-p Version of the Finite Element Method with Quasiuniform Meshes (*) , 2009 .
[14] Hans-Joachim Bungartz,et al. Einführung in die Computergraphik - Grundlagen, geometrische Modellierung, Algorithmen , 1996, Mathematische Grundlagen der Informatik.
[15] hp-FEM for second moments of elliptic PDEs with stochastic data: part 1: analytic regularity , 2010 .
[16] A. Cohen. On random fields , 1967 .
[17] V. Bogachev. Gaussian Measures on a , 2022 .
[18] D. Owen. Handbook of Mathematical Functions with Formulas , 1965 .
[19] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[20] M. G. Duffy,et al. Quadrature Over a Pyramid or Cube of Integrands with a Singularity at a Vertex , 1982 .
[21] Christoph Schwab,et al. Sparse Finite Elements for Stochastic Elliptic Problems – Higher Order Moments , 2003, Computing.
[22] Kenneth B. Huber. Department of Mathematics , 1894 .
[23] G. Pólya,et al. Remarks on Characteristic Functions , 1949 .
[24] Helmut Harbrecht,et al. A finite element method for elliptic problems with stochastic input data , 2010 .
[25] Christoph Schwab,et al. Sparse finite elements for elliptic problems with stochastic loading , 2003, Numerische Mathematik.
[26] Andreas Keese,et al. Review of Recent Developments in the Numerical Solution of Stochastic Partial Differential Equations (Stochastic Finite Elements)A , 2003 .
[27] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[28] PAUL HOUSTON,et al. Stabilized hp-Finite Element Methods for First-Order Hyperbolic Problems , 2000, SIAM J. Numer. Anal..
[29] R. Lathe. Phd by thesis , 1988, Nature.
[30] P. Frauenfelder. hp-Finite element methods on anisotropically, locally refined meshes in three dimensions with stochastic data , 2004 .
[31] Eric F Darve,et al. Author ' s personal copy A hybrid method for the parallel computation of Green ’ s functions , 2009 .
[32] C. P. Gupta,et al. Applications of Mathematics , 2007 .
[33] L. Nikolova,et al. On ψ- interpolation spaces , 2009 .
[34] D. Griffin,et al. Finite-Element Analysis , 1975 .
[35] Hermann G. Matthies,et al. Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .
[36] Ivo Babuška,et al. Regularity of the solution of elliptic problems with piecewise analytic data. Part 1. Boundary value problems for linear elliptic equation of second order , 1988 .
[37] I. J. Schoenberg. Metric spaces and completely monotone functions , 1938 .
[38] Will Light,et al. Approximation Theory in Tensor Product Spaces , 1985 .
[39] Carl W David,et al. Stirling's Approximation , 2007 .
[40] G. Prato. An Introduction to Infinite-Dimensional Analysis , 2006 .
[41] P. Revesz. Interpolation and Approximation , 2010 .
[42] Reinhard Hochmuth. AN INHOMOGENEOUS DIRICHLET PROBLEM FOR A NON-HYPOELLIPTIC LINEAR PARTIAL DIFFERENTIAL OPERATOR , 1996 .