Dynamic and Stochastic Properties of Molecular Systems: From Simple Liquids to Enzymes

Molecular dynamics method (MDM) supplies to the solution of fundamental contradiction between macroscopic irreversibility and microscopic reversibility with data which help to reveal the origin of stochastization in many-particle systems. The relation between dynamic memory time tm, fluctuation of energy dE and K-entropy (Lyapunov exponent) is treated. MDM is a method which retains Newtonian dynamics only at the times less than tm and carries out a statistical averaging over initial conditions along the trajectory run. Meaning of tm for real systems is related to the quantum uncertainty, which is always finite for any classical system and influence upon particle trajectories in a coarse-graining manner. Relaxation of kinetic energy to equilibrium state was studied by MDM for non-equilibrium strongly coupled plasmas. Two stages of relaxation were observed: initial fast non-Boltzmann oscillatory stage and further relatively slow Boltzmann relaxation. Violation of the microscopic reversibility principle in some enzymatic reactions is discussed.

[1]  Ilya Prigogine,et al.  Laws of nature, probability and time symmetry breaking , 1999 .

[2]  E. M. Lifshitz,et al.  Course in Theoretical Physics , 2013 .

[3]  M. A. López-Marcos,et al.  Explicit Symplectic Integrators Using Hessian-Vector Products , 1997, SIAM J. Sci. Comput..

[4]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[5]  Yu. A. Kravtsov Fundamental and Practical Limits of Predictability , 1993 .

[6]  R. Balescu Equilibrium and Nonequilibrium Statistical Mechanics , 1991 .

[7]  K. Popper Unended Quest: An Intellectual Autobiography , 1976 .

[8]  William G. Hoover,et al.  Time Reversibility, Computer Simulation, And Chaos , 1999 .

[9]  G. Norman,et al.  Equations of Motion and Energy Conservation in Molecular Dynamics , 1993 .

[10]  Hoover,et al.  Time-reversible dissipative ergodic maps. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  Stefano Longhi Spiral waves in optical parametric oscillators , 2001 .

[12]  Joseph Ford,et al.  Numerical Experiments on the Stochastic Behavior of a Lennard-Jones Gas System , 1973 .

[13]  I︠U︡riĭ Aleksandrovich Kravt︠s︡ov Limits of predictability , 1993 .

[14]  I. R. Mcdonald,et al.  Thermal relaxation in a strongly coupled two-temperature plasma , 1983 .

[15]  V. Morozov,et al.  Statistical mechanics of nonequilibrium processes , 1996 .

[16]  Hoover,et al.  Finite-precision stationary states at and away from equilibrium , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  J. Lebowitz Microscopic origins of irreversible macroscopic behavior , 1999 .

[18]  W. G. Hoover Computational Statistical Mechanics , 1991 .

[19]  D. C. Rapaport,et al.  The Art of Molecular Dynamics Simulation , 1997 .

[20]  G. Rowlands A numerical algorithm for Hamiltonian systems , 1991 .

[21]  David Potter Computational physics , 1973 .

[22]  H. Posch,et al.  Lyapunov instability of dense Lennard-Jones fluids. , 1988, Physical review. A, General physics.

[23]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[24]  Hans J. Morgenthau,et al.  An intellectual autobiography , 1978 .

[25]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[26]  J. Neumann,et al.  Beweis des Ergodensatzes und desH-Theorems in der neuen Mechanik , 1929 .

[27]  Lyapunov exponent and the solid-fluid phase transition , 1997, chao-dyn/9704003.

[28]  M. A. López-Marcos,et al.  Are Gauss-Legendre methods useful in molecular dynamics? , 1996 .

[29]  K. Nishihara,et al.  PARTICLE SIMULATION OF LYAPUNOV EXPONENTS IN ONE-COMPONENT STRONGLY COUPLED PLASMAS , 1997 .

[30]  E. M. Lifshitz,et al.  Quantum mechanics: Non-relativistic theory, , 1959 .