Equivariante and Self-similar Standing Waves for a Hamiltonian Hyperbolic-hyperbolic Spin-field System

In this paper we study the existence of special symmetric solutions to a Hamiltonian hyperbolic-hyperbolic coupled spin-field system, where the spins are maps from $\mathbb R^{2+1}$ into the sphere $\S^2$ or the pseudo-sphere $\H^2$. This model was introduced in \cite{Martina} and it is also known as the {\it hyperbolic-hyperbolic generalized Ishimori system}. Relying on the hyperbolic coordinates introduced in \cite{KNZ11}, we prove the existence of equivariant standing waves in both regular hyperbolic coordinates as well as similarity variables, and describe their asymptotic behaviour.

[1]  N. Hayashi,et al.  On the Davey–Stewartson and Ishimori Systems , 1999 .

[2]  L. Solombrino,et al.  Nonlinear excitations in a Hamiltonian spin-field model in 2+1 dimensions. , 1994, Physical review. B, Condensed matter.

[3]  C. Chicone Ordinary Differential Equations with Applications , 1999, Texts in Applied Mathematics.

[4]  A. Soyeur The Cauchy problem for the Ishimori equations , 1992 .

[5]  L. Sung The Cauchy Problem for the Ishimori Equation , 1996 .

[6]  B. Konopelchenko,et al.  On the inverse scattering transform for the Ishimori equation , 1989 .

[7]  Claude Bardos,et al.  On the continuous limit for a system of classical spins , 1986 .

[8]  C. Kenig,et al.  On the Stability of Certain Spin Models in 2+1 Dimensions , 2009, 0906.1312.

[9]  H. McGahagan An Approximation Scheme for Schrödinger Maps , 2007 .

[10]  Yuji Ishimori,et al.  Multi-Vortex Solutions of a Two-Dimensional Nonlinear Wave Equation , 1984 .

[11]  J. Shatah,et al.  Self-similar solutions for the Schrödinger map equation , 2010 .

[12]  O. Pashaev,et al.  The Cauchy problem for the planar spin-liquid model , 2005 .

[13]  Karen K. Uhlenbeck,et al.  On Schrödinger maps , 2003 .

[14]  B. Konopelchenko,et al.  Inverse Spectral Transform for the Nonlinear Evolution Equation Generating the Davey-Stewartson and Ishimori Equations , 1990 .

[15]  C. Kenig,et al.  On the Initial Value Problem for the Ishimori System , 2000 .

[16]  C. Zeng,et al.  Self-similar solutions of Schrödinger flows , 2009 .

[17]  I. Bejenaru,et al.  On Schrödinger maps , 2008 .

[18]  Luis Vega,et al.  Schrodinger Maps and Their Associated Frame Systems , 2006 .

[19]  J. Saut,et al.  Global existence of small solutions to the Ishimori system without exponential decay on the data , 1996, Differential and Integral Equations.

[20]  P. Kevrekidis,et al.  Radial standing and self-similar waves for the hyperbolic cubic NLS in 2D , 2011, 1102.2374.

[21]  C. Kenig,et al.  The Cauchy problem for the hyperbolic–elliptic Ishimori system and Schrödinger maps , 2005 .

[22]  Felipe Linares,et al.  On the Davey-Stewartson systems , 1993 .

[23]  Carlos E. Kenig,et al.  Global Schrödinger maps in dimensions $d≥ 2$: Small data in the critical Sobolev spaces , 2011 .

[24]  J. Saut,et al.  Global existence of small solutions to the Davey-Stewartson and the Ishimori systems , 1995, Differential and Integral Equations.

[25]  Shui-Nee Chow,et al.  Invariant manifolds for flows in Banach spaces , 1988 .

[26]  G. Soliani,et al.  A noncompact spin model in (2+1) dimensions , 1990 .