Determination of the electronic density of states at a nanostructured TiO2/Ru-dye/electrolyte interface by means of photoelectron spectroscopy

[1]  P. A. Brühwiler,et al.  Adsorption of bi-isonicotinic acid on rutile TiO2(110) , 1999 .

[2]  S. Zakeeruddin,et al.  Structure of Nanocrystalline TiO2 Powders and Precursor to Their Highly Efficient Photosensitizer , 1997 .

[3]  Anders Hagfeldt,et al.  Lithium Intercalation in Nanoporous Anatase TiO2 Studied with XPS , 1997 .

[4]  A. Zaban,et al.  Relative Energetics at the Semiconductor/Sensitizing Dye/Electrolyte Interface , 1998 .

[5]  D. Klug,et al.  Trap-limited recombination in dye-sensitized nanocrystalline metal oxide electrodes , 2001 .

[6]  Anders Hagfeldt,et al.  The electronic structure of the cis-bis(4,4′-dicarboxy-2,2′-bipyridine)-bis(isothiocyanato)ruthenium(II) complex and its ligand 2,2′-bipyridyl-4,4′-dicarboxylic acid studied with electron spectroscopy , 1997 .

[7]  M. Grätzel,et al.  EPR observation of trapped electrons in colloidal titanium dioxide , 1985 .

[8]  H. Rensmo,et al.  Absorption and electrochemical properties of ruthenium(II) dyes, studied by semiempirical quantum chemical calculations , 1998 .

[9]  L. Kavan,et al.  Rocking Chair Lithium Battery Based on Nanocrystalline TiO2 (Anatase) , 1995 .

[10]  K. Gordon,et al.  In situ infrared spectroscopic analysis of the adsorption of ruthenium(II) bipyridyl dicarboxylic acid photosensitisers to TiO2 in aqueous solutions , 1997 .

[11]  K. Seki,et al.  Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces (vol 11, pg 605, 1999) , 1999 .

[12]  K. Wijayantha,et al.  Characterisation of electron transport and back reaction in dye-sensitised nanocrystalline solar cells by small amplitude laser pulse excitation , 2000 .

[13]  Stashans,et al.  Theoretical study of lithium intercalation in rutile and anatase. , 1996, Physical review. B, Condensed matter.

[14]  Anders Hagfeldt,et al.  Light-Induced Redox Reactions in Nanocrystalline Systems , 1995 .

[15]  Jacques-E. Moser,et al.  The Role of Surface States in the Ultrafast Photoinduced Electron Transfer from Sensitizing Dye Molecules to Semiconductor Colloids , 2000 .

[16]  Jenny Nelson,et al.  Continuous-time random-walk model of electron transport in nanocrystalline TiO 2 electrodes , 1999 .

[17]  P. A. Brühwiler,et al.  C 1s ionisation potential and energy referencing for solid C60 films on metal surfaces , 1996 .

[18]  K. Nebesny,et al.  Absence of final-state screening shifts in photoemission spectroscopy frontier orbital alignment measurements at organic/semiconductor interfaces , 1999 .

[19]  H. Ozaki,et al.  Computer Simulations of Charge Transport in Dye-Sensitized Nanocrystalline Photovoltaic Cells , 2001 .

[20]  F. Willig,et al.  Influence of trap filling on photocurrent transients in polycrystalline TiO2 , 1991 .

[21]  J. L. Woolfrey,et al.  Vibrational Spectroscopic Study of the Coordination of (2,2‘-Bipyridyl-4,4‘-dicarboxylic acid)ruthenium(II) Complexes to the Surface of Nanocrystalline Titania , 1998 .

[22]  Y. Wada,et al.  Importance of binding states between photosensitizing molecules and the TiO2 surface for efficiency in a dye-sensitized solar cell , 1995 .

[23]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[24]  Laurence M. Peter,et al.  Dynamic Response of Dye-Sensitized Nanocrystalline Solar Cells: Characterization by Intensity-Modulated Photocurrent Spectroscopy , 1997 .

[25]  H. Rensmo,et al.  XPS studies of Ru-polypyridine complexes for solar cell applications , 1999 .

[26]  P. Hoyer,et al.  Photocarrier transport in colloidal titanium dioxide films , 1993 .

[27]  G. Boschloo,et al.  Investigation of the potential distribution in porous nanocrystalline TiO2 electrodes by electrolyte electroreflection , 1997 .

[28]  David R. Klug,et al.  Parameters Influencing Charge Recombination Kinetics in Dye-Sensitized Nanocrystalline Titanium Dioxide Films , 2000 .

[29]  H. Onishi,et al.  STM-imaging of formate intermediates adsorbed on a TiO2(110) surface , 1994 .

[30]  J. T. Ranney,et al.  The Surface Science of Metal Oxides , 1995 .

[31]  K. Seki,et al.  ENERGY LEVEL ALIGNMENT AND INTERFACIAL ELECTRONIC STRUCTURES AT ORGANIC/METAL AND ORGANIC/ORGANIC INTERFACES , 1999 .

[32]  A. J. Frank,et al.  Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO2 Solar Cells: A Study by Intensity Modulated Photovoltage Spectroscopy , 1997 .

[33]  C. Peden,et al.  The structure of formate on TiO2 (110) by scanned-energy and scanned -angle photoelectron diffraction , 1998 .

[34]  Henrik Lindström,et al.  Electron Transport in the Nanostructured TiO2-Electrolyte System Studied with Time-Resolved Photocurrents , 1997 .

[35]  Jean-François Guillemoles,et al.  Nature of Photovoltaic Action in Dye-Sensitized Solar Cells , 2000 .

[36]  Eric A. Schiff,et al.  Ambipolar Diffusion of Photocarriers in Electrolyte-Filled, Nanoporous TiO2† , 2000 .

[37]  Mohammad Khaja Nazeeruddin,et al.  Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes , 1993 .

[38]  O. Björneholm,et al.  Soft X-ray undulator beam line I411 at MAX-II for gases, liquids and solid samples , 1999 .

[39]  D. Vanmaekelbergh,et al.  Trap-Limited Electronic Transport in Assemblies of Nanometer-Size TiO2 Particles. , 1996, Physical review letters.