Optimalisasi Penyaluran Bantuan Pemerintah Untuk UMKM Menggunakan Metode Fuzzy C-Means

Indonesian MSMEs were very seriously affected by the Covid-19 pandemic, which caused the Indonesian economy has experienced deceleration. The Indonesian government has taken several steps to keep economic activity running, such as direct cash assistance for micro-scale businesses but is having problems in obtaining real data so that assistance is not on target, the clustering method using Fuzzy C-Means (FCM) is used for grouping MSME data. FCM allows the data to be a member of all clusters in which each cluster has a membership degree value of 0-1. The data used is from the website of the Sleman Regency Cooperatives and SME Service. FCM classifies MSME data based on the attributes of revenue, assets and number of workers. This research resulted in grouping MSME data into 3 priority levels for MSMEs in obtaining assistance, namely high priority, medium priority, and low priority. The results of this study show that the number of MSMEs with high priority is 23,023 MSMEs, medium priority is 9,774 MSMEs and low priority is 3,159 MSMEs. The validation test of the FCM method uses the Partition Coefficient Index (PCI) which has a value of 0.826 which means that value good because it is close to 1.  

[1]  Lis Diana Mustafa,et al.  Clustering Data Remunerasi Dosen Untuk Penilaian Kinerja Menggunakan Fuzzy c-Means , 2018 .

[2]  Rahman Syarif Perbandingan Algoritme K-Means Dengan Algoritme Fuzzy C Means (FCM) Dalam Clustering Moda Transportasi Berbasis GPS , 2018 .

[3]  Ernawati Ernawati,et al.  Implementasi Algoritma Fuzzy C - Means Clustering Dan Simple Additive Weighting Dalam Pemberian Bantuan Program Peningkatan Kualitas Kawasan Permukiman , 2017 .

[4]  Aknolt Kristian Pakpahan COVID-19 dan Implikasi Bagi Usaha Mikro, Kecil, dan Menengah , 2020 .

[5]  Gat Gat,et al.  Sistem Referensi Pemilihan Smartphone Android Dengan Metode Fuzzy C-Means dan TOPSIS , 2020, Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi).

[6]  Sonal Jain,et al.  Comparative Study of K-means and Fuzzy C-means Algorithms on The Breast Cancer Data , 2018 .

[7]  Imam Buchori,et al.  Strategi UMKM untuk Meningkatkan Perekonomian selama Pandemi Covid-19 pada saat New Normal , 2020 .

[8]  Novianti Puspitasari,et al.  Penentuan Prioritas Perbaikan Jalan Menggunakan Fuzzy C-Means : Studi Kasus Perbaikan Jalan Di Kota Samarinda , 2017 .

[9]  Prihandoko Prihandoko,et al.  Perbandingan Algoritma K-Means dengan Fuzzy C-Means Untuk Clustering Tingkat Kedisiplinan Kinerja Karyawan , 2018, Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi).

[10]  Bps PERTUMBUHAN EKONOMI INDONESIA TRIWULAN II-2008 , 2008 .

[11]  Teknik Informatika,et al.  Perbandingan Metode Clustering dalam Pengelompokan Data Puskesmas , 2020 .

[12]  K. Rajkumar,et al.  Fuzzy clustering and fuzzy c-means partition cluster analysis and validation studies on a subset of citescore dataset , 2019, International Journal of Electrical and Computer Engineering (IJECE).

[13]  B. Dermawan,et al.  Optimasi Fuzzy C-Means Clustering Untuk Data Besar dengan Pemrograman R , 2016 .

[14]  Lili Marlinah Peluang dan Tantangan UMKM Dalam Upaya Memperkuat Perekonomian Nasional Tahun 2020 Ditengah Pandemi Covid 19 , 2020 .

[15]  M. Mustakim,et al.  Penerapan Algoritma Fuzzy C Means untuk Analisis Permasalahan Simpanan Wajib Anggota Koperasi , 2018 .

[16]  Chong Wu,et al.  RETRACTED ARTICLE: Company financial path analysis using fuzzy c-means and its application in financial failure prediction , 2018 .

[17]  Siti Monalisa,et al.  Sistem Rekomendasi Produk Menggunakan Model RFM, AHP dan Ranked Clustering , 2019 .

[18]  M. Premasundari,et al.  A VIOLENT CRIME ANALYSIS USING FUZZY C-MEANS CLUSTERING APPROACH , 2019 .