캐릭터 성장 유형 분류를 통한 온라인 게임 하드코어 유저와 게임 봇 탐지 연구

온라인 게임에서 게임 봇의 사용은 개인정보 탈취, 계정도용의 보안 문제를 발생시킨다. 또한, 게임 봇은 게임 내 재화를 불공정하게 수집하여 게임 콘텐츠의 빠른 소비와 정당한 게임 사용자에게 상대적 박탈감을 주어 게임시장 침체를 일으킨다. 본 연구에서는 실제 온라인 게임 내 캐릭터의 성장 과정 분석을 통해 성장 유형을 정의하고, 성장 유형에서 게임 봇을 탐지 및 하드코어 유저와 봇을 분류하는 프레임워크를 제안한다. 실제 게임 데이터에 제안한 프레임워크를 적용하여 5가지로 성장 유형을 분류하였고, 93%의 정확도로 봇 탐지 및 하드코어 유저와 봇을 구분하였다. 또한 기존연구에서 봇으로 탐지되었던 하드코어 유저를 구분해내고, 게임 봇을 성장 전에 사전 탐지함으로써 향상된 성능을 보였다.