Quantum key distribution without detector vulnerabilities using optically seeded lasers

Quantum cryptography immune from detector attacks is realized by the development of a source of indistinguishable laser pulses based on optically seeded gain-switched lasers. Key rates exceeding 1 Mb s−1 are demonstrated in the finite-size regime.

[1]  C. Boisrobert,et al.  Fiber Optic Communication Systems , 1979 .

[2]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[3]  P R Tapster,et al.  Non-classical interference between independent sources , 1997 .

[4]  H. Lo,et al.  Practical Decoy State for Quantum Key Distribution , 2005, quant-ph/0503005.

[5]  Xiang‐Bin Wang,et al.  Beating the PNS attack in practical quantum cryptography , 2004 .

[6]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[7]  Xiongfeng Ma,et al.  ar X iv : q ua ntp h / 05 12 08 0 v 2 1 1 A pr 2 00 6 TIMESHIFT ATTACK IN PRACTICAL QUANTUM , 2005 .

[8]  John Preskill,et al.  Security of quantum key distribution using weak coherent states with nonrandom phases , 2007, Quantum Inf. Comput..

[9]  Christine Chen,et al.  Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems , 2007, 0704.3253.

[10]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[11]  Sellami Ali,et al.  DECOY STATE QUANTUM KEY DISTRIBUTION , 2010 .

[12]  Feihu Xu,et al.  Experimental demonstration of phase-remapping attack in a practical quantum key distribution system , 2010, 1005.2376.

[13]  J. Skaar,et al.  Hacking commercial quantum cryptography systems by tailored bright illumination , 2010, 1008.4593.

[14]  Vadim Makarov,et al.  Avoiding the blinding attack in QKD , 2010 .

[15]  Christian Kurtsiefer,et al.  Full-field implementation of a perfect eavesdropper on a quantum cryptography system. , 2010, Nature communications.

[16]  Stefano Pirandola,et al.  Side-channel-free quantum key distribution. , 2011, Physical review letters.

[17]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[18]  Chun-Mei Zhang,et al.  Improved statistical fluctuation analysis for measurement-device-independent quantum key distribution , 2012 .

[19]  Xiongfeng Ma,et al.  Statistical fluctuation analysis for measurement-device-independent quantum key distribution , 2012, 1210.3929.

[20]  Qiaoyan Wen,et al.  Finite-key analysis for measurement-device-independent quantum key distribution , 2012 .

[21]  James F. Dynes,et al.  A quantum access network , 2013, Nature.

[22]  T. F. D. Silva,et al.  Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits , 2012, 1207.6345.

[23]  I Lucio-Martinez,et al.  Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks. , 2013, Physical review letters.

[24]  Feihu Xu,et al.  Practical aspects of measurement-device-independent quantum key distribution , 2013, 1305.6965.

[25]  M. Fejer,et al.  Experimental measurement-device-independent quantum key distribution. , 2012, Physical review letters.

[26]  A R Dixon,et al.  Efficient decoy-state quantum key distribution with quantified security. , 2013, Optics express.

[27]  Jian-Wei Pan,et al.  Measurement-device-independent quantum key distribution over 200 km. , 2014, Physical review letters.

[28]  Valerio Scarani,et al.  The black paper of quantum cryptography: Real implementation problems , 2009, Theor. Comput. Sci..

[29]  Yoshihisa Yamamoto,et al.  Practical quantum key distribution protocol without monitoring signal disturbance , 2014, Nature.

[30]  J. F. Dynes,et al.  Room temperature single-photon detectors for high bit rate quantum key distribution , 2014 .

[31]  Li Qian,et al.  Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. , 2013, Physical review letters.

[32]  J. F. Dynes,et al.  Robust random number generation using steady-state emission of gain-switched laser diodes , 2014, 1407.0933.

[33]  J. F. Dynes,et al.  Interference of short optical pulses from independent gain-switched laser diodes for quantum secure communications , 2014, 1501.01900.

[34]  Andrew Sharpe,et al.  Field trial of a quantum secured 10 Gb/s DWDM transmission system over a single installed fiber. , 2014, Optics express.

[35]  James F. Dynes,et al.  Security Bounds for Efficient Decoy-State Quantum Key Distribution , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[36]  J. F. Dynes,et al.  GHz-gated InGaAs / InP single-photon detector with detection efficiency exceeding 55 % at 1550 nm , 2015 .

[37]  Qiang Zhou,et al.  Measurement-device-independent quantum key distribution: from idea towards application , 2015, 1501.07307.

[38]  Richard V. Penty,et al.  Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550 nm , 2015 .

[39]  Stefano Pirandola,et al.  High-rate measurement-device-independent quantum cryptography , 2013, Nature Photonics.

[40]  Xiang‐Bin Wang,et al.  Statistical fluctuation analysis for measurement-device-independent quantum key distribution with three-intensity decoy-state method , 2014, 1410.3265.

[41]  Y.-H. Zhou,et al.  Making the decoy-state measurement-device-independent quantum key distribution practically useful , 2015, 1502.01262.

[42]  Norbert Lütkenhaus,et al.  Security proof of quantum key distribution with detection-efficiency mismatch , 2017 .