Robust inverse optimal control for discrete-time nonlinear system stabilization

Abstract This paper presents an inverse optimal control approach in order to achieve stabilization of discrete-time nonlinear systems, avoiding the need to solve the associated Hamilton–Jacobi–Bellman equation, and minimizing a cost functional. Then, the proposed approach is extended to discrete-time disturbed nonlinear systems. The synthesized stabilizing optimal controller is based on a discrete-time control Lyapunov function. The applicability of the proposed approach is illustrated via simulations.

[1]  Alexander G. Loukianov,et al.  Discrete-time nonlinear systems inverse optimal control: A control Lyapunov function approach , 2011, 2011 IEEE International Conference on Control Applications (CCA).

[2]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[3]  R. Freeman,et al.  Robust Nonlinear Control Design: State-Space and Lyapunov Techniques , 1996 .

[4]  I. Karafyllis,et al.  Necessary and sufficient conditions for robust global asymptotic stabilization of discrete-time systems , 2006 .

[5]  P. Kokotovic,et al.  Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations , 1999 .

[6]  Zhong-Ping Jiang,et al.  Input-to-state stability for discrete-time nonlinear systems , 1999 .

[7]  Mohamed Darouach,et al.  Discrete time lq design from the viewpoint of the inverse optimal regulator , 1994 .

[8]  Michael N. Vrahatis,et al.  Particle Swarm Optimization and Intelligence: Advances and Applications , 2010 .

[9]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[10]  Salvatore Monaco,et al.  Nonlinear optimal stabilizing control in discrete time , 2012, 2012 American Control Conference (ACC).

[11]  P. Olver Nonlinear Systems , 2013 .

[12]  Edgar N. Sánchez,et al.  Inverse optimal control for discrete-time stochastic nonlinear systems stabilization , 2013, 2013 American Control Conference.

[13]  Amir Ali Ahmadi,et al.  Non-monotonic Lyapunov functions for stability of discrete time nonlinear and switched systems , 2008, 2008 47th IEEE Conference on Decision and Control.

[14]  R. E. Kalman,et al.  When Is a Linear Control System Optimal , 1964 .

[15]  Riccardo Marino,et al.  Nonlinear control design: geometric, adaptive and robust , 1995 .

[16]  Valentin Tanasa,et al.  Nonlinear optimal stabilizing control under sampling , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[17]  A. Arapostathis,et al.  Linearization of discrete-time systems , 1987 .

[18]  Miroslav Krstic,et al.  Stabilization of stochastic nonlinear systems driven by noise of unknown covariance , 2001, IEEE Trans. Autom. Control..

[19]  E. Sánchez,et al.  Inverse optimal control for discrete‐time nonlinear systems via passivation , 2014 .

[20]  L. Magni,et al.  Stability margins of nonlinear receding-horizon control via inverse optimality , 1997 .

[21]  Donald E. Kirk,et al.  Optimal control theory : an introduction , 1970 .

[22]  E. Sánchez,et al.  Discrete-time inverse optimal control for block control form nonlinear systems , 2012, World Automation Congress 2012.

[23]  Victor M. Becerra,et al.  Optimal control , 2008, Scholarpedia.

[24]  Miroslav Krstic,et al.  Stabilization of Nonlinear Uncertain Systems , 1998 .

[25]  St. Kotsios Some topological dynamics properties of discrete-time control systems , 1993 .

[26]  Qunjing Wang,et al.  Inverse optimal noise-to-state stabilization of stochastic recurrent neural networks driven by noise of unknown covariance , 2009 .

[27]  J. Doyle,et al.  NONLINEAR OPTIMAL CONTROL: A CONTROL LYAPUNOV FUNCTION AND RECEDING HORIZON PERSPECTIVE , 1999 .

[28]  B. Anderson,et al.  Nonlinear regulator theory and an inverse optimal control problem , 1973 .

[29]  E. Sánchez,et al.  Discrete-Time Robust Inverse Optimal Control for a Class of Nonlinear Systems , 2011 .

[30]  J. Willems,et al.  Inverse optimal control problem for linear discrete-time systems , 1977 .

[31]  Alexander G. Loukianov,et al.  Speed-gradient inverse optimal control for discrete-time nonlinear systems , 2011, IEEE Conference on Decision and Control and European Control Conference.

[32]  F. Mazenc,et al.  Disturbance attenuation for discrete-time feedforward nonlinear systems , 1999 .

[33]  Eva M. Navarro-López,et al.  Local feedback passivation of nonlinear discrete-time systems through the speed-gradient algorithm , 2007, Autom..

[34]  Mrdjan J. Jankovic,et al.  Constructive Nonlinear Control , 2011 .

[35]  Alexander G. Loukianov,et al.  Particle Swarm Optimization for Discrete-Time Inverse Optimal Control of a Doubly Fed Induction Generator , 2013, IEEE Transactions on Cybernetics.

[36]  Alexander G. Loukianov,et al.  Discrete-Time Inverse Optimal Control for Nonlinear Systems , 2013 .

[37]  R. Freeman,et al.  Control Lyapunov functions: new ideas from an old source , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[38]  A. Packard,et al.  Searching for Control Lyapunov Functions using Sums of Squares Programming , 2022 .

[39]  Edgar N. Sanchez,et al.  Discrete-Time Inverse Optimal Control for Nonlinear Systems , 2013 .

[40]  Ülle Kotta,et al.  Inversion Method in the Discrete-time Nonlinear Control Systems Synthesis Problems , 1995 .

[41]  Soura Dasgupta,et al.  NONLINEAR OPTIMAL CONTROL , 2007 .

[42]  M. Krstić,et al.  Inverse optimal design of input-to-state stabilizing nonlinear controllers , 1998, IEEE Trans. Autom. Control..

[43]  Yoichi Maeda,et al.  Euler's discretization revisited , 1995 .

[44]  J. Casti On the general inverse problem of optimal control theory , 1980 .