Modelling snow water equivalent and spring runoff in a boreal watershed, James Bay, Canada

The hydrology of boreal regions is strongly influenced by seasonal snow accumulation and melt. In this study, we compare simulations of snow water equivalent (SWE) and streamflow by using the hydrological model HYDROTEL with two contrasting approaches for snow modelling: a mixed degree-day/energy balance model (small number of inputs, but several calibration parameters needed) and the thermodynamic model CROCUS (large number of inputs, but no calibration parameter needed). The study site, in Northern Quebec, Canada was equipped with a ground-based gamma ray sensor measuring the SWE continuously for 5 years in a small forest clearing. The first simulation of CROCUS showed a tendency to underestimate SWE, attributable to bias in the meteorological inputs. We found that it was appropriate to use a threshold of 2 °C to separate rain and snow. We also applied a correction to account for snowfall undercatch by the precipitation gauge. After these modifications to the input dataset, we noticed that CROCUS clearly overestimated the SWE, likely as a result of not including loss in SWE because of blowing snow sublimation and relocation. To correct this, we included into CROCUS a simple parameterisation effective after a certain wind speed threshold, after which the thermodynamic model performed much better than the traditional mixed degree-day/energy balance model. HYDROTEL was then used to simulate streamflow with both snow models. With CROCUS, the main peak flow could be captured, but the second peak because of delayed snowmelt from forested areas could not be reproduced due to a lack of sub-canopy radiation data to feed CROCUS. Despite the relative homogeneity of the boreal landscape, data inputs from each land cover type are needed to generate satisfying simulation of the spring runoff. Copyright © 2013 John Wiley & Sons, Ltd.

[1]  Barry E. Goodison,et al.  Accuracy of Canadian Snow Gage Measurements , 1978 .

[2]  Paul K. Barten,et al.  The peatland hydrologic impact model: development and testing. , 1987 .

[3]  J. Cecil Alter,et al.  SHIELDED STORAGE PRECIPITATION GAGES1 , 1937 .

[4]  John Kochendorfer,et al.  How Well Are We Measuring Snow: The NOAA/FAA/NCAR Winter Precipitation Test Bed , 2012 .

[5]  Richard Kelly,et al.  The AMSR-E Snow Depth Algorithm: Description and Initial Results , 2009 .

[6]  C. Genthon,et al.  Numerical modeling of snow cover over polar ice sheets , 1997, Annals of Glaciology.

[7]  D. Mcclung,et al.  Crocus test results for snowpack modeling in two snow climates with respect to avalanche forecasting , 1998, Annals of Glaciology.

[8]  Richard Turcotte,et al.  Operational analysis of the spatial distribution and the temporal evolution of the snowpack water equivalent in southern Québec, Canada , 2007 .

[9]  Roy Rasmussen,et al.  Dependence of Snow Gauge Collection Efficiency on Snowflake Characteristics , 2012 .

[10]  Alexandre Langlois,et al.  Hourly simulations of the microwave brightness temperature of seasonal snow in Quebec, Canada, using a coupled snow evolution―emission model , 2011 .

[11]  John W. Pomeroy,et al.  WINTER RADIATION EXTINCTION AND REFLECTION IN A BOREAL PINE CANOPY: MEASUREMENTS AND MODELLING , 1996 .

[12]  Pierre Etchevers,et al.  Relationship between precipitation phase and air temperature : comparison between the Bolivian Andes and the Swiss Alps : Glacier shrinkage in the Andes and consequences for water resources , 2005 .

[13]  Yves Lejeune,et al.  Relationship between precipitation phase and air temperature: comparison between the Bolivian Andes and the Swiss Alps / Relation entre phase de précipitation et température de l'air: comparaison entre les Andes Boliviennes et les Alpes Suisses , 2005 .

[14]  R. Jordan A One-dimensional temperature model for a snow cover : technical documentation for SNTHERM.89 , 1991 .

[15]  P. Taylor,et al.  On snow depth predictions with the Canadian land surface scheme including a parametrization of blowing snow sublimation , 2006 .

[16]  A. Rousseau,et al.  Implementation of a Peatland-Specific Water Budget Algorithm in HYDROTEL , 2009 .

[17]  T. Barnett,et al.  Potential impacts of a warming climate on water availability in snow-dominated regions , 2005, Nature.

[18]  Jean-Pierre Fortin,et al.  Hydrotel, un modèle hydrologique distribué pouvant bénéficier des données fournies par la télédétection et les systèmes d'information géographique , 1995 .

[19]  A. H. Auer The Rain versus Snow Threshold Temperatures , 1974 .

[20]  R. A. Schmidt,et al.  Vertical profiles of wind speed, snow concentration, and humidity in blowing snow , 1982 .

[21]  Dorothy K. Hall,et al.  Nimbus-7 SMMR derived global snow cover parameters , 1987 .

[22]  Jean-Pierre Villeneuve,et al.  DISTRIBUTED WATERSHED MODEL COMPATIBLE WITH REMOTE SENSING AND GIS DATA .I : D ESCRIPTION OF MODEL , 2001 .

[23]  E. Brun,et al.  A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting , 1992, Journal of Glaciology.

[24]  Daqing Yang,et al.  Adjustment of daily precipitation data at 10 climate stations in Alaska: Application of World Meteorological Organization intercomparison results , 1998 .

[25]  Jean-Pierre Villeneuve,et al.  Prévision hydrologique distribuée pour la gestion des barrages publics du Québec , 2004 .

[26]  P. Bartelt,et al.  A physical SNOWPACK model for the Swiss avalanche warning: Part I: numerical model , 2002 .

[27]  Monique Bernier,et al.  Determination of snow water equivalent using RADARSAT SAR data in eastern Canada , 1999 .

[28]  D. Gray,et al.  The Prairie Blowing Snow Model: characteristics, validation, operation , 1993 .

[29]  S. Kienzle A new temperature based method to separate rain and snow , 2008 .

[30]  D. Marks,et al.  Point simulation of seasonal snow cover dynamics beneath boreal forest canopies , 1999 .

[31]  Matthew Sturm,et al.  Winter Precipitation Patterns in Arctic Alaska Determined from a Blowing-Snow Model and Snow-Depth Observations , 2002 .

[32]  Kalifa Goita,et al.  Inversion of a Snow Emission Model Calibrated With In Situ Data for Snow Water Equivalent Monitoring , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[33]  E. Martin,et al.  An Energy and Mass Model of Snow Cover Suitable for Operational Avalanche Forecasting , 1989, Journal of Glaciology.

[34]  M. Bernier,et al.  Modélisation de l'évolution du couvert nival, sur le sous-bassin LG4 de la rivière La Grande dans le nord du Québec, à l'aide du modèle français CROCUS , 2004 .

[35]  Curtis E. Woodcock,et al.  Snow ablation modeling at the stand scale in a boreal jack pine forest , 1997 .

[36]  R. Bintanja Modelling snowdrift sublimation and its effect on the moisture budget of the atmospheric boundary layer , 2001 .

[37]  F. Anctil,et al.  Correcting wind‐induced bias in solid precipitation measurements in case of limited and uncertain data , 2008 .

[38]  C. Derksen,et al.  Simulation of Snow Water Equivalent (SWE) Using Thermodynamic Snow Models in Québec, Canada , 2009 .

[39]  John W. Pomeroy,et al.  Turbulent fluxes during blowing snow: field tests of model sublimation predictions , 1999 .