Analysis of the structure of human telomerase RNA in vivo.

Telomerase is a ribonucleoprotein reverse transcriptase that synthesises telomeric DNA. The RNA component of telomerase acts as a template for telomere synthesis and binds the reverse transcriptase. In this study, we have performed in vivo and in vitro structural analyses of human telomerase RNA (hTR). In vivo mapping experiments showed that the 5'-terminal template domain of hTR folds into a long hairpin structure, in which the template sequence occupies a readily accessible position. Intriguingly, neither in vivo nor in vitro mapping of hTR confirmed formation of a stable 'pseudoknot' helix, suggesting that this functionally essential long range interaction is formed only temporarily. In vitro control mappings demonstrated that the 5'-terminal template domain of hTR cannot fold correctly in the absence of cellular protein factors. The 3'-terminal domain of hTR, both in vivo and in vitro, folds into the previously predicted box H/ACA snoRNA-like 'hairpin-hinge-hairpin-tail' structure. Finally, comparison of the in vivo and in vitro modification patterns of hTR revealed several regions that might be directly involved in binding of telomerase reverse transcriptase or other telomerase proteins.

[1]  R. Sternglanz,et al.  Identification of two RNA-binding proteins associated with human telomerase RNA. , 2000, Molecular biology of the cell.

[2]  J. Licht,et al.  Telomerase RNA function in recombinant Tetrahymena telomerase. , 1999, Genes & development.

[3]  T. Cech,et al.  Secondary structure of the circular form of the Tetrahymena rRNA intervening sequence: a technique for RNA structure analysis using chemical probes and reverse transcriptase. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[4]  T. Kiss,et al.  A small nucleolar guide RNA functions both in 2′‐O‐ribose methylation and pseudouridylation of the U5 spliceosomal RNA , 2001, The EMBO journal.

[5]  D. Romero,et al.  Ciliate telomerase RNA structural features. , 1995, Nucleic acids research.

[6]  W. Filipowicz,et al.  In Vitro Assembly of Human H/ACA Small Nucleolar RNPs Reveals Unique Features of U17 and Telomerase RNAs , 2000, Molecular and Cellular Biology.

[7]  Tamás Kiss,et al.  Small nucleolar RNA‐guided post‐transcriptional modification of cellular RNAs , 2001, The EMBO journal.

[8]  Bryan Frank,et al.  Two Inactive Fragments of the Integral RNA Cooperate To Assemble Active Telomerase with the Human Protein Catalytic Subunit (hTERT) In Vitro , 1999, Molecular and Cellular Biology.

[9]  Tamás Kiss,et al.  Elements essential for accumulation and function of small nucleolar RNAs directing site‐specific pseudouridylation of ribosomal RNAs , 1999, The EMBO journal.

[10]  O. Uhlenbeck,et al.  Specific labeling of 3' termini of RNA with T4 RNA ligase. , 1980, Methods in enzymology.

[11]  F. Kafatos,et al.  End labeling of enzymatically decapped mRNA. , 1977, Nucleic acids research.

[12]  C. Autexier,et al.  Mutational analysis of the Tetrahymena telomerase RNA: identification of residues affecting telomerase activity in vitro. , 1998, Nucleic acids research.

[13]  Laurie Smith,et al.  The RNA World of the Nucleolus: Two Major Families of Small RNAs Defined by Different Box Elements with Related Functions , 1996, Cell.

[14]  M. Blasco,et al.  Identification of Functional Domains and Dominant Negative Mutations in Vertebrate Telomerase RNA Using an in VivoReconstitution System* , 2001, The Journal of Biological Chemistry.

[15]  J. Ni,et al.  Small Nucleolar RNAs Direct Site-Specific Synthesis of Pseudouridine in Ribosomal RNA , 1997, Cell.

[16]  A. Matsuura,et al.  TLP1: A Gene Encoding a Protein Component of Mammalian Telomerase Is a Novel Member of WD Repeats Family , 1997, Cell.

[17]  J. Steitz,et al.  Sno Storm in the Nucleolus: New Roles for Myriad Small RNPs , 1997, Cell.

[18]  C. Autexier,et al.  Reconstitution of human telomerase activity and identification of a minimal functional region of the human telomerase RNA. , 1996, The EMBO journal.

[19]  Jiunn-Liang Chen,et al.  Secondary Structure of Vertebrate Telomerase RNA , 2000, Cell.

[20]  E. Blackburn,et al.  Architecture of telomerase RNA. , 1994, The EMBO journal.

[21]  M. Robinson,et al.  Reconstitution of human telomerase activity in vitro , 1998, Current Biology.

[22]  Tamás Kiss,et al.  Site-Specific Pseudouridine Formation in Preribosomal RNA Is Guided by Small Nucleolar RNAs , 1997, Cell.

[23]  K. Pleij,et al.  A conserved pseudoknot in telomerase RNA. , 1991, Nucleic acids research.

[24]  O. Uhlenbeck,et al.  Keeping RNA happy. , 1995, RNA.

[25]  W. Filipowicz,et al.  Human H / ACA Small Nucleolar RNPs and Telomerase Share Evolutionarily Conserved Proteins NHP 2 and NOP 10 , 2000 .

[26]  E. Blackburn,et al.  The telomerase RNA pseudoknot is critical for the stable assembly of a catalytically active ribonucleoprotein. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[27]  K. Collins,et al.  Human telomerase activation requires two independent interactions between telomerase RNA and telomerase reverse transcriptase. , 2000, Molecular cell.

[28]  W. Filipowicz,et al.  Characterization of the intron-encoded U19 RNA, a new mammalian small nucleolar RNA that is not associated with fibrillarin , 1996, Molecular and cellular biology.

[29]  R. Terns,et al.  Nucleolar localization signals of Box H/ACA small nucleolar RNAs , 1999, The EMBO journal.

[30]  W. Krzyzosiak,et al.  Patterns of cleavages induced by lead ions in defined RNA secondary structure motifs. , 1998, Journal of molecular biology.

[31]  H. Noller,et al.  Rapid chemical probing of conformation in 16 S ribosomal RNA and 30 S ribosomal subunits using primer extension. , 1986, Journal of molecular biology.

[32]  Jeffrey B. Cheng,et al.  A Box H/ACA Small Nucleolar RNA-Like Domain at the Human Telomerase RNA 3′ End , 1999, Molecular and Cellular Biology.

[33]  T. Cech,et al.  Telomerase and the maintenance of chromosome ends. , 1999, Current opinion in cell biology.

[34]  Daniel P. Romero,et al.  A conserved secondary structure for telomerase RNA , 1991, Cell.

[35]  F. Solymosy,et al.  Plant small nuclear RNAs. Nucleolar U3 snRNA is present in plants: partial characterization. , 1985, European journal of biochemistry.

[36]  G. Morin,et al.  Functional requirement of p23 and Hsp90 in telomerase complexes. , 1999, Genes & development.

[37]  Lea Harrington,et al.  A Mammalian Telomerase-Associated Protein , 1997, Science.

[38]  T. Cech,et al.  Analysis of the structure of Tetrahymena nuclear RNAs in vivo: telomerase RNA, the self-splicing rRNA intron, and U2 snRNA. , 1995, RNA.

[39]  B. Ganem RNA world , 1987, Nature.

[40]  F. Solymosy,et al.  Plant small nuclear RNAs. II. U6 RNA and a 4.5SI-like RNA are present in plant nuclei. , 1987, Nucleic acids research.

[41]  T. Kiss,et al.  The family of box ACA small nucleolar RNAs is defined by an evolutionarily conserved secondary structure and ubiquitous sequence elements essential for RNA accumulation. , 1997, Genes & development.

[42]  F. Bachand,et al.  Functional Regions of Human Telomerase Reverse Transcriptase and Human Telomerase RNA Required for Telomerase Activity and RNA-Protein Interactions , 2001, Molecular and Cellular Biology.

[43]  V. Lundblad,et al.  The telomerase reverse transcriptase: components and regulation. , 1998, Genes & development.

[44]  T. Cech,et al.  Telomerase RNAs of different ciliates have a common secondary structure and a permuted template. , 1994, Genes & development.

[45]  K. Collins,et al.  A telomerase component is defective in the human disease dyskeratosis congenita , 1999, Nature.

[46]  R. Wagner,et al.  A chemical modification method for the structural analysis of RNA and RNA-protein complexes within living cells. , 1998, Analytical biochemistry.