Analysis of Na+/Ca2+ exchanger (NCX) function and current in murine cardiac myocytes during heart failure

[1]  Congxin Huang,et al.  The mechanisms underlying ICa heterogeneity across murine left ventricle , 2011, Molecular and Cellular Biochemistry.

[2]  C. Hyun,et al.  The cardiac biomarker sodium-calcium exchanger (NCX-1) can differentiate between heart failure and renal failure: a comparative study of NCX-1 expression in dogs with chronic mitral valvular insufficiency and azotemia. , 2010, Journal of veterinary internal medicine.

[3]  Ludivine Renaud,et al.  beta-Adrenergic receptor stimulated Ncx1 upregulation is mediated via a CaMKII/AP-1 signaling pathway in adult cardiomyocytes. , 2010, Journal of molecular and cellular cardiology.

[4]  J. Brown,et al.  Beta-adrenergic receptor signaling in the heart: role of CaMKII. , 2010, Journal of molecular and cellular cardiology.

[5]  J. McMurray,et al.  Clinical practice. Systolic heart failure. , 2010, The New England journal of medicine.

[6]  S. Nattel,et al.  Ion-channel mRNA-expression profiling: Insights into cardiac remodeling and arrhythmic substrates. , 2010, Journal of molecular and cellular cardiology.

[7]  A. Mattiazzi,et al.  Angiotensin II–Induced Oxidative Stress Resets the Ca2+ Dependence of Ca2+–Calmodulin Protein Kinase II and Promotes a Death Pathway Conserved Across Different Species , 2009, Circulation research.

[8]  P. Deedwania,et al.  Beta-Adrenergic Blockers for Chronic Heart Failure , 2009, Cardiology in review.

[9]  C. Marshall,et al.  Characterization of zebrafish (Danio rerio) NCX4: a novel NCX with distinct electrophysiological properties. , 2009, American journal of physiology. Cell physiology.

[10]  Denis Noble,et al.  The role of the Na+/Ca2+ exchangers in Ca2+ dynamics in ventricular myocytes. , 2008, Progress in biophysics and molecular biology.

[11]  Stanley Nattel,et al.  Regional and tissue specific transcript signatures of ion channel genes in the non‐diseased human heart , 2007, The Journal of physiology.

[12]  S. Pastoreková,et al.  Modulation of expression of Na+/Ca2+ exchanger in heart of rat and mouse under stress , 2007, Acta physiologica.

[13]  Donald M Bers,et al.  Role of Ca2+/calmodulin-dependent protein kinase (CaMK) in excitation-contraction coupling in the heart. , 2007, Cardiovascular research.

[14]  K. Dilly,et al.  Differential Calcineurin/NFATc3 Activity Contributes to the Ito Transmural Gradient in the Mouse Heart , 2006, Circulation research.

[15]  K. Dilly,et al.  Mechanisms underlying variations in excitation–contraction coupling across the mouse left ventricular free wall , 2006, The Journal of physiology.

[16]  D. L. Campbell,et al.  Transient outward potassium current, ‘Ito’, phenotypes in the mammalian left ventricle: underlying molecular, cellular and biophysical mechanisms , 2005, The Journal of physiology.

[17]  R. Mathias,et al.  Transmural gradients in Na/K pump activity and [Na+]I in canine ventricle. , 2005, Biophysical journal.

[18]  Deborah DiSilvestre,et al.  Transmural Heterogeneity of Na+–Ca2+ Exchange: Evidence for Differential Expression in Normal and Failing Hearts , 2005, Circulation research.

[19]  S. Harrison,et al.  Decreased Ca2+ extrusion via Na+/Ca2+ exchange in epicardial left ventricular myocytes during compensated hypertrophy. , 2005, American journal of physiology. Heart and circulatory physiology.

[20]  F. Shibasaki,et al.  Calcineurin Inhibits Na+/Ca2+ Exchange in Phenylephrine-treated Hypertrophic Cardiomyocytes* , 2005, Journal of Biological Chemistry.

[21]  H. Schunkert,et al.  ACE inhibitors and angiotensin II receptor antagonists. , 2005, Handbook of experimental pharmacology.

[22]  Godfrey L. Smith,et al.  Myocardial Infarction Causes Increased Expression But Decreased Activity of the Myocardial Na+—Ca2+ Exchanger in the Rabbit , 2003, The Journal of physiology.

[23]  Kenneth R. Laurita,et al.  Transmural Heterogeneity of Calcium Handling in Canine , 2003, Circulation research.

[24]  R. Coronel,et al.  Increased Na+/H+-exchange activity is the cause of increased [Na+]i and underlies disturbed calcium handling in the rabbit pressure and volume overload heart failure model. , 2003, Cardiovascular research.

[25]  D. Bers,et al.  Na/Ca Exchange in Heart Failure , 2002 .

[26]  M. Hori,et al.  Echocardiographic assessment of LV hypertrophy and function in aortic-banded mice: necropsy validation. , 2002, American journal of physiology. Heart and circulatory physiology.

[27]  D. Bers,et al.  Na/Ca exchange in heart failure: contractile dysfunction and arrhythmogenesis. , 2002, Annals of the New York Academy of Sciences.

[28]  C Antzelevitch,et al.  Larger late sodium conductance in M cells contributes to electrical heterogeneity in canine ventricle. , 2001, American journal of physiology. Heart and circulatory physiology.

[29]  Joseph A. Hill,et al.  Na+-Ca2+ Exchanger Remodeling in Pressure Overload Cardiac Hypertrophy* , 2001, The Journal of Biological Chemistry.

[30]  T. Iwamoto,et al.  Cardiac Na+-Ca2+ Exchange Molecular and Pharmacological Aspects , 2001 .

[31]  T. Iwamoto,et al.  Cardiac Na(+)-Ca(2+) exchange: molecular and pharmacological aspects. , 2001, Circulation research.

[32]  C Antzelevitch,et al.  I(NaCa) contributes to electrical heterogeneity within the canine ventricle. , 2000, American journal of physiology. Heart and circulatory physiology.

[33]  Hong Zhu,et al.  Alternative promoters and cardiac muscle cell-specific expression of the Na+/Ca2+exchanger gene. , 1998, American journal of physiology. Heart and circulatory physiology.

[34]  K. Philipson,et al.  Alternative promoters and cardiac muscle cell-specific expression of the Na 1 / Ca 2 1 exchanger gene , 1997 .

[35]  B. Quednau,et al.  Cloning of a Third Mammalian Na+-Ca2+ Exchanger, NCX3* , 1996, The Journal of Biological Chemistry.

[36]  D. Cotter,et al.  Acid-activatable Cysteine Proteinases in the Cellular Slime Mold Dictyostelium discoideum* , 1996, The Journal of Biological Chemistry.

[37]  C. Antzelevitch,et al.  Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardial, and endocardial myocytes. A weaker IKs contributes to the longer action potential of the M cell. , 1995, Circulation research.

[38]  S. Matsuoka,et al.  Cloning of the NCX2 isoform of the plasma membrane Na(+)-Ca2+ exchanger. , 1994, The Journal of biological chemistry.