Computational approaches for interpreting scRNA‐seq data

The recent developments in high‐throughput single‐cell RNA sequencing technology (scRNA‐seq) have enabled the generation of vast amounts of transcriptomic data at cellular resolution. With these advances come new modes of data analysis, building on high‐dimensional data mining techniques. Here, we consider biological questions for which scRNA‐seq data is used, both at a cell and gene level, and describe tools available for these types of analyses. This is an exciting and rapidly evolving field, where clustering, pseudotime inference, branching inference and gene‐level analyses are particularly informative areas of computational analysis.

[1]  Fabian J Theis,et al.  Diffusion pseudotime robustly reconstructs lineage branching , 2016, Nature Methods.

[2]  Andrew E. Jaffe,et al.  Bioinformatics Applications Note Gene Expression the Sva Package for Removing Batch Effects and Other Unwanted Variation in High-throughput Experiments , 2022 .

[3]  Valentine Svensson,et al.  Power Analysis of Single Cell RNA-Sequencing Experiments , 2016, Nature Methods.

[4]  Kieran R. Campbell,et al.  switchde: inference of switch-like differential expression along single-cell trajectories , 2016, Bioinform..

[5]  E. Pierson,et al.  ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis , 2015, Genome Biology.

[6]  Steve Horvath,et al.  WGCNA: an R package for weighted correlation network analysis , 2008, BMC Bioinformatics.

[7]  Fabian J. Theis,et al.  destiny: diffusion maps for large-scale single-cell data in R , 2015, Bioinform..

[8]  Keegan D. Korthauer,et al.  A statistical approach for identifying differential distributions in single-cell RNA-seq experiments , 2016, Genome Biology.

[9]  Fabian J Theis,et al.  Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells , 2015, Nature Biotechnology.

[10]  E. Marco,et al.  Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape , 2014, Proceedings of the National Academy of Sciences.

[11]  Bo Wang,et al.  Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning , 2016, Nature Methods.

[12]  I. Hellmann,et al.  Comparative Analysis of Single-Cell RNA Sequencing Methods , 2016, bioRxiv.

[13]  Hannah A. Pliner,et al.  Reversed graph embedding resolves complex single-cell trajectories , 2017, Nature Methods.

[14]  Junhyong Kim,et al.  Reconstructing the Temporal Ordering of Biological Samples Using Microarray Data , 2003, Bioinform..

[15]  Kieran R. Campbell,et al.  Order Under Uncertainty: Robust Differential Expression Analysis Using Probabilistic Models for Pseudotime Inference , 2016, bioRxiv.

[16]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[17]  Aleksandra A. Kolodziejczyk,et al.  Accounting for technical noise in single-cell RNA-seq experiments , 2013, Nature Methods.

[18]  Jong Kyoung Kim,et al.  Corrigendum: Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression , 2015, Nature Communications.

[19]  Gioele La Manno,et al.  Quantitative single-cell RNA-seq with unique molecular identifiers , 2013, Nature Methods.

[20]  S. Teichmann,et al.  Computational and analytical challenges in single-cell transcriptomics , 2015, Nature Reviews Genetics.

[21]  Valentina Proserpio,et al.  Single‐cell technologies to study the immune system , 2015, Immunology.

[22]  Catalina A. Vallejos,et al.  BASiCS: Bayesian Analysis of Single-Cell Sequencing Data , 2015, PLoS Comput. Biol..

[23]  Scott A. Rifkin,et al.  Imaging individual mRNA molecules using multiple singly labeled probes , 2008, Nature Methods.

[24]  S. Teichmann,et al.  Single-Cell RNA-Sequencing Reveals a Continuous Spectrum of Differentiation in Hematopoietic Cells , 2016, Cell reports.

[25]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[26]  E. H. Simpson,et al.  The Interpretation of Interaction in Contingency Tables , 1951 .

[27]  Michael I. Love,et al.  Differential analysis of count data – the DESeq2 package , 2013 .

[28]  G. Yule NOTES ON THE THEORY OF ASSOCIATION OF ATTRIBUTES IN STATISTICS , 1903 .

[29]  P. Linsley,et al.  MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data , 2015, Genome Biology.

[30]  Martin Hemberg,et al.  Modelling dropouts allows for unbiased identification of marker genes in scRNASeq experiments , 2016 .

[31]  Sarah A. Teichmann,et al.  Single-Cell RNA Sequencing Reveals T Helper Cells Synthesizing Steroids De Novo to Contribute to Immune Homeostasis , 2014, Cell reports.

[32]  Walter L. Ruzzo,et al.  Isolator: accurate and stable analysis of isoform-level expression in RNA-Seq experiments , 2016, bioRxiv.

[33]  Aaron T. L. Lun,et al.  scater: pre-processing, quality control, normalisation and visualisation of single-cell RNA-seq data in R , 2016 .

[34]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[35]  M. Schaub,et al.  SC3 - consensus clustering of single-cell RNA-Seq data , 2016, Nature Methods.

[36]  David G Hendrickson,et al.  Differential analysis of gene regulation at transcript resolution with RNA-seq , 2012, Nature Biotechnology.

[37]  Ning Leng,et al.  OEFinder: a user interface to identify and visualize ordering effects in single-cell RNA-seq data , 2016, Bioinform..

[38]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[39]  Kieran R. Campbell,et al.  Ouija : Incorporating prior knowledge in single-cell trajectory learning using Bayesian nonlinear factor analysis , 2016 .

[40]  Jeff E. Mold,et al.  Analysis of allelic expression patterns in clonal somatic cells by single-cell RNA-seq , 2016, Nature Genetics.

[41]  J. Marioni,et al.  Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data , 2013, Genome Biology.

[42]  Sean C. Bendall,et al.  Wishbone identifies bifurcating developmental trajectories from single-cell data , 2016, Nature Biotechnology.

[43]  Anton J. Enright,et al.  Kraken: A set of tools for quality control and analysis of high-throughput sequence data , 2013, Methods.

[44]  Rona S. Gertner,et al.  Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells , 2013, Nature.

[45]  R. Durbin,et al.  Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses , 2012, Nature Protocols.

[46]  C. Ponting,et al.  Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity , 2015, Nature Methods.

[47]  Andrew J. Hill,et al.  Single-cell mRNA quantification and differential analysis with Census , 2017, Nature Methods.

[48]  Aleksandra A. Kolodziejczyk,et al.  Flipping between Polycomb repressed and active transcriptional states introduces noise in gene expression , 2017, bioRxiv.

[49]  Sarah A. Teichmann,et al.  Genetics and immunity in the era of single-cell genomics , 2016, Human molecular genetics.

[50]  Aleksandra A. Kolodziejczyk,et al.  Classification of low quality cells from single-cell RNA-seq data , 2016, Genome Biology.

[51]  J. Leek svaseq: removing batch effects and other unwanted noise from sequencing data , 2014, bioRxiv.

[52]  F. Ginhoux,et al.  Mpath maps multi-branching single-cell trajectories revealing progenitor cell progression during development , 2016, Nature Communications.

[53]  S. Linnarsson,et al.  Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq , 2015, Science.

[54]  S. Horvath,et al.  Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing , 2013, Nature.

[55]  Mauricio Barahona,et al.  SC3 - consensus clustering of single-cell RNA-Seq data , 2016, Nature Methods.

[56]  Catalin C. Barbacioru,et al.  Tracing the Derivation of Embryonic Stem Cells from the Inner Cell Mass by Single-Cell RNA-Seq Analysis , 2010, Cell stem cell.

[57]  Neil D. Lawrence,et al.  A Simple Approach to Ranking Differentially Expressed Gene Expression Time Courses through Gaussian Process Regression , 2011, BMC Bioinformatics.

[58]  Hui Wang,et al.  SINCERA: A Pipeline for Single-Cell RNA-Seq Profiling Analysis , 2015, PLoS Comput. Biol..

[59]  Aleksandra A. Kolodziejczyk,et al.  Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression , 2015, Nature Communications.

[60]  Cole Trapnell,et al.  The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells , 2014, Nature Biotechnology.

[61]  Hans Clevers,et al.  Single-cell messenger RNA sequencing reveals rare intestinal cell types , 2015, Nature.

[62]  Ross Cloney Cancer genomics: Single-cell RNA-seq to decipher tumour architecture , 2017, Nature Reviews Genetics.

[63]  Yin Hu,et al.  Robust detection of alternative splicing in a population of single cells , 2016, Nucleic acids research.

[64]  Chen Xu,et al.  Identification of cell types from single-cell transcriptomes using a novel clustering method , 2015, Bioinform..

[65]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.

[66]  A. Oudenaarden,et al.  Validation of noise models for single-cell transcriptomics , 2014, Nature Methods.

[67]  C. Ponting,et al.  G&T-seq: parallel sequencing of single-cell genomes and transcriptomes , 2015, Nature Methods.

[68]  Li Wang,et al.  Reversed graph embedding resolves complex single-cell developmental trajectories , 2017, bioRxiv.

[69]  Nir Yosef,et al.  ImpulseDE: detection of differentially expressed genes in time series data using impulse models , 2016, Bioinform..

[70]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[71]  Joydeep Ghosh,et al.  Cluster Ensembles --- A Knowledge Reuse Framework for Combining Multiple Partitions , 2002, J. Mach. Learn. Res..

[72]  Howard Y. Chang,et al.  Single-cell chromatin accessibility reveals principles of regulatory variation , 2015, Nature.

[73]  N. Navin,et al.  The first five years of single-cell cancer genomics and beyond , 2015, Genome research.

[74]  L. Moroz,et al.  Single-neuron transcriptome and methylome sequencing for epigenomic analysis of aging. , 2013, Methods in molecular biology.

[75]  A. Oudenaarden,et al.  Design and Analysis of Single-Cell Sequencing Experiments , 2015, Cell.

[76]  Allon M. Klein,et al.  Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells , 2015, Cell.

[77]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[78]  Joel S. Parker,et al.  Adjustment of systematic microarray data biases , 2004, Bioinform..

[79]  R. Sandberg,et al.  Single-Cell RNA-Seq Reveals Dynamic, Random Monoallelic Gene Expression in Mammalian Cells , 2014, Science.

[80]  Aaron T. L. Lun,et al.  Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R , 2017, Bioinform..

[81]  Siddharth S. Dey,et al.  Integrated genome and transcriptome sequencing from the same cell , 2014, Nature Biotechnology.

[82]  O. Stegle,et al.  Single-Cell Genome-Wide Bisulfite Sequencing for Assessing Epigenetic Heterogeneity , 2014, Nature Methods.

[83]  Li Wang,et al.  Dimensionality Reduction Via Graph Structure Learning , 2015, KDD.

[84]  R. Irizarry,et al.  Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript abundance estimation , 2015, Nature Biotechnology.

[85]  Fabian J Theis,et al.  Decoding the Regulatory Network for Blood Development from Single-Cell Gene Expression Measurements , 2015, Nature Biotechnology.

[86]  S. Dudoit,et al.  Normalization of RNA-seq data using factor analysis of control genes or samples , 2014, Nature Biotechnology.

[87]  P. Kharchenko,et al.  Bayesian approach to single-cell differential expression analysis , 2014, Nature Methods.

[88]  B. Williams,et al.  From single-cell to cell-pool transcriptomes: Stochasticity in gene expression and RNA splicing , 2014, Genome research.

[89]  Ann B. Lee,et al.  Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[90]  Sean C. Bendall,et al.  Single-Cell Trajectory Detection Uncovers Progression and Regulatory Coordination in Human B Cell Development , 2014, Cell.