Digitization of Partitions and Tessellations

We study hierarchies of partitions in a topological space where the interiors of the classes and their frontiers are simultaneously represented. In both continuous and discrete cases our approach rests on tessellations whose classes are $$\mathcal {R}$$-open sets. In the discrete case, the passage from partitions to tessellations is expressed by Alexandrov topology and yields double resolutions. A new topology is proposed to remove the ambiguities of the diagonal configurations. It leads to the triangular grid in $$\mathbb {Z}^{2}$$ and the centered cubic grid in $$\mathbb {Z}^{3}$$, which are the only translation invariant grids which preserve connectivity and permit the use of saliency functions.

[1]  Gilles Bertrand,et al.  Completions and Simplicial Complexes , 2011, DGCI.

[2]  Gilles Bertrand,et al.  Collapses and Watersheds in Pseudomanifolds of Arbitrary Dimension , 2014, Journal of Mathematical Imaging and Vision.

[3]  Erik Melin Digital Surfaces and Boundaries in Khalimsky Spaces , 2007, Journal of Mathematical Imaging and Vision.

[4]  Gilles Bertrand,et al.  Uniqueness of the Perfect Fusion Grid on ℤd , 2009, Journal of Mathematical Imaging and Vision.

[5]  Efim Khalimsky,et al.  Topological structures in computer science , 1987 .

[6]  G. Matheron Random Sets and Integral Geometry , 1976 .

[7]  B. R. Kiran Energetic-lattice based optimization , 2014 .

[8]  Azriel Rosenfeld,et al.  Well-Composed Sets , 1995, Comput. Vis. Image Underst..

[9]  Michel Couprie,et al.  Paths, Homotopy and Reduction in Digital Images , 2011 .

[10]  Vladimir A. Kovalevsky,et al.  Finite topology as applied to image analysis , 1989, Comput. Vis. Graph. Image Process..

[11]  E. H. Kronheimer The topology of digital images , 1992 .

[12]  Christer O. Kiselman Digital Geometry and Mathematical Morphology , 2004 .

[13]  Longin Jan Latecki,et al.  Digital Topology , 1994 .

[14]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[15]  G. Matheron Éléments pour une théorie des milieux poreux , 1967 .

[16]  H. Heijmans Morphological image operators , 1994 .

[17]  Jean Cousty,et al.  Some Morphological Operators in Graph Spaces , 2009, ISMM.

[18]  Laurent Najman,et al.  Geodesic Saliency of Watershed Contours and Hierarchical Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Jean Paul Frédéric Serra,et al.  Fusion of ground truths and hierarchies of segmentations , 2014, Pattern Recognit. Lett..