A study of the application of singular perturbation theory. [development of a real time algorithm for optimal three dimensional aircraft maneuvers

[1]  Sachio Uehara,et al.  Minimum-Time Loop Maneuvers of Jet Aircraft , 1978 .

[2]  W. Rheinboldt Numerical methods for a class of nite dimensional bifur-cation problems , 1978 .

[3]  Anthony Calise,et al.  A singular perturbation analysis of optimal thrust control with proportional navigation guidance , 1977, 1977 IEEE Conference on Decision and Control including the 16th Symposium on Adaptive Processes and A Special Symposium on Fuzzy Set Theory and Applications.

[4]  P. Orava,et al.  Interval length continuation method for solving two-point boundary-value problems , 1977 .

[5]  R. Kellogg,et al.  A Constructive Proof of the Brouwer Fixed-Point Theorem and Computational Results , 1976 .

[6]  John V. Breakwell,et al.  Optimal flight-path-angle transitions in minimum time airplane climbs , 1976 .

[7]  Milan Kubicek,et al.  Algorithm 502: Dependence of Solution of Nonlinear Systems on a Parameter [C5] , 1976, TOMS.

[8]  H. Kelley Correspondence item: Some aspects of two-on-one pursuitevasion , 1973 .

[9]  E. Polak,et al.  Computational methods in optimization : a unified approach , 1972 .

[10]  J. K. Hedrick,et al.  Three-dimensional, minimum-time turns for a supersonic aircraft , 1972 .

[11]  R. L. Schultz,et al.  Aircraft performance optimization. , 1972 .

[12]  Michael G. Parsons,et al.  Constant Altitude Minimum Time Turns to a Line and to a Point for a Supersonic Aircraft Aircraft with a Constraint on Maximum Velocity. , 1971 .

[13]  Arthur E. Bryson,et al.  A Study of Techniques for Real-Time, On-Line Optimum Flight Path Control. Minimum-Time Turns to a Specified Track. , 1971 .

[14]  Arthur E. Bryson,et al.  Minimum time turns for a supersonic airplane at constant altitude , 1971 .

[15]  H. Kelley Reduced-order modeling in aircraft mission analysis , 1971 .

[16]  H. Kelley Singular perturbations for a Mayer variational problem , 1970 .

[17]  G. Sandri,et al.  A generalized multiple scales approach to a class of linear differential equations , 1969 .

[18]  A. Balakrishnan On a new computing technique in optimal control and its application to minimal-time flight profile optimization , 1969 .

[19]  Petar V. Kokotovic,et al.  Singular perturbation method for reducing the model order in optimal control design , 1968 .

[20]  H. Ashley,et al.  Multiple scaling in flight vehicle dynamic analysis - A preliminary look , 1967 .

[21]  M. L. Matthews,et al.  STOP - A computer program for supersonic transport trajectory optimization , 1967 .

[22]  Angelo Miele,et al.  Optimum Climbing Technique for a Rocket-Powered Aircraft , 1955 .

[23]  R Bellman,et al.  Monotone Approximation in Dynamic Programming and the Calculus of Variations. , 1954, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Edward S. Rutowski Energy Approach to the General Aircraft Performance Problem , 1954 .

[25]  F. Ficken The continuation method for functional equations , 1951 .

[26]  Mark D. Ardema,et al.  Nonlinear singularly perturbed optimal control problems with singular arcs , 1980, Autom..

[27]  Nguyen Canh,et al.  A convergence theorem on the iterative solution of nonlinear two-point boundary-value systems , 1974, Kybernetika.

[28]  E. Wasserstrom Numerical Solutions by the Continuation Method , 1973 .

[29]  H. Kelley State variable selection and singular perturbations , 1972 .

[30]  K. J. Lush A review of the problem of choosing a climb technique, with proposals for a new climb technique for high performance aircraft , 1948 .