Gravitational waves from stochastic scalar fluctuations

We present a novel mechanism for gravitational wave generation in the early Universe. Light spectator scalar fields during inflation can acquire a blue-tilted power spectrum due to stochastic effects. We show that this effect can lead to large curvature perturbations at small scales (induced by the spectator field fluctuations) while maintaining the observed, slightly red-tilted curvature perturbations at large cosmological scales (induced by the inflaton fluctuations). Along with other observational signatures, such as enhanced dark matter substructure, large curvature perturbations can induce a stochastic gravitational wave background (SGWB). The predicted strength of SGWB in our scenario, $\Omega_{\rm GW}h^2 \simeq 10^{-20} - 10^{-15}$, can be observed with future detectors, operating between $10^{-5}$ Hz and 10 Hz. We note that, in order to accommodate the newly reported NANOGrav observation, one could consider the same class of spectator models. At the same time, one would need to go beyond the simple benchmark considered here and consider a regime in which a misalignment contribution is also important.

[1]  Joseph P. Glaser,et al.  The NANOGrav 15 yr Data Set: Search for Signals from New Physics , 2023, The Astrophysical Journal Letters.

[2]  Joseph P. Glaser,et al.  The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background , 2023, The Astrophysical Journal Letters.

[3]  L. Pinol,et al.  No-go theorem for scalar-trispectrum-induced gravitational waves , 2022, Journal of Cosmology and Astroparticle Physics.

[4]  A. Price-Whelan,et al.  Snowmass2021 Theory Frontier White Paper: Astrophysical and Cosmological Probes of Dark Matter , 2022, Journal of High Energy Astrophysics.

[5]  M. Geller,et al.  Gravitational waves from incomplete inflationary phase transitions , 2022, Physical Review D.

[6]  H. Firouzjahi,et al.  Stochastic effects in axion inflation and primordial black hole formation , 2022, Physical Review D.

[7]  H. Firouzjahi,et al.  Multiple field ultraslow-roll inflation: Primordial black holes from straight bulk and distorted boundary , 2022, Physical Review D.

[8]  D. Chung,et al.  Analytic treatment of underdamped axionic blue isocurvature perturbations , 2021, Physical Review D.

[9]  G. Domènech Scalar Induced Gravitational Waves Review , 2021, Universe.

[10]  S. Kuroyanagi,et al.  Probing prerecombination physics by the cross-correlation of stochastic gravitational waves and CMB anisotropies , 2021, Physical Review D.

[11]  Zachary J. Weiner,et al.  Non-Gaussianity and the induced gravitational wave background , 2021, Journal of Cosmology and Astroparticle Physics.

[12]  Vicente Atal,et al.  Probing non-Gaussianities with the high frequency tail of induced gravitational waves , 2021, Journal of Cosmology and Astroparticle Physics.

[13]  K. Schmitz New sensitivity curves for gravitational-wave signals from cosmological phase transitions , 2021, Journal of High Energy Physics.

[14]  Vincent S. H. Lee,et al.  Probing small-scale power spectra with pulsar timing arrays , 2020, Journal of High Energy Physics.

[15]  A. Green,et al.  Primordial black holes as a dark matter candidate , 2020, Journal of Physics G: Nuclear and Particle Physics.

[16]  B. Carr,et al.  Primordial Black Holes as Dark Matter: Recent Developments , 2020, Annual Review of Nuclear and Particle Science.

[17]  S. Antusch,et al.  Energy distribution and equation of state of the early Universe: Matching the end of inflation and the onset of radiation domination , 2020, 2005.07563.

[18]  J. García-Bellido,et al.  Unveiling the gravitational universe at μ-Hz frequencies , 2019, Experimental Astronomy.

[19]  T. Markkanen,et al.  Scalar correlation functions in de Sitter space from the stochastic spectral expansion , 2019, Journal of Cosmology and Astroparticle Physics.

[20]  Edward J. Wollack,et al.  Spectral Distortions of the CMB as a Probe of Inflation, Recombination, Structure Formation and Particle Physics , 2019, 1903.04218.

[21]  D. Maity,et al.  (P)reheating after minimal plateau inflation and constraints from CMB , 2018, Journal of Cosmology and Astroparticle Physics.

[22]  C. Unal Imprints of primordial non-Gaussianity on gravitational wave spectrum , 2018, Physical Review D.

[23]  D. Chung,et al.  Search for strongly blue axion isocurvature , 2018, Physical Review D.

[24]  J. Aumont,et al.  Planck2018 results , 2018, Astronomy & Astrophysics.

[25]  P. Graham,et al.  Stochastic axion scenario , 2018, Physical Review D.

[26]  K. Kohri,et al.  Semianalytic calculation of gravitational wave spectrum nonlinearly induced from primordial curvature perturbations , 2018, Physical Review D.

[27]  N. Weiner,et al.  Halometry from astrometry , 2018, Journal of Cosmology and Astroparticle Physics.

[28]  M. Taoso,et al.  Primordial black hole dark matter from single field inflation , 2017, 1709.05565.

[29]  J. García-Bellido,et al.  Primordial black holes from single field models of inflation , 2017, 1702.03901.

[30]  Antonio Argandoña Inflation , 2016 .

[31]  M. Amin,et al.  Equation of State and Duration to Radiation Domination after Inflation. , 2016, Physical review letters.

[32]  P. Graham,et al.  Vector Dark Matter from Inflationary Fluctuations , 2015, 1504.02102.

[33]  H. Yoo,et al.  Elementary theorems regarding blue isocurvature perturbations , 2015, 1501.05618.

[34]  M. Kamionkowski,et al.  Equation-of-State Parameter for Reheating , 2014, 1412.0656.

[35]  T. Yanagida,et al.  Primordial black hole formation from an axionlike curvaton model , 2012, 1207.2550.

[36]  Jens Chluba,et al.  CMB at 2 × 2 order: the dissipation of primordial acoustic waves and the observable part of the associated energy release , 2012, 1202.0057.

[37]  A. Erickcek,et al.  Reheating Effects in the Matter Power Spectrum and Implications for Substructure , 2011, 1106.0536.

[38]  F. Cyr-Racine,et al.  Reheating in Inflationary Cosmology: Theory and Applications , 2010, 1001.2600.

[39]  M. Kawasaki,et al.  Axion isocurvature fluctuations with extremely blue spectrum , 2009, 0904.3800.

[40]  Karim A. Malik,et al.  Cosmological perturbations , 2008, Series on the Foundations of Natural Science and Technology.

[41]  P. Steinhardt,et al.  Gravitational Wave Spectrum Induced by Primordial Scalar Perturbations , 2007, hep-th/0703290.

[42]  D. Wands,et al.  Cosmological gravitational wave background from primordial density perturbations , 2006, gr-qc/0612013.

[43]  L. Kofman,et al.  Equation of state and Beginning of Thermalization After Preheating , 2005, hep-ph/0507096.

[44]  W. Kinney Horizon crossing and inflation with large η , 2005, gr-qc/0503017.

[45]  E. Kolb,et al.  Isocurvature constraints on gravitationally produced superheavy dark matter , 2004, astro-ph/0411468.

[46]  N. Tsamis,et al.  Improved estimates of cosmological perturbations , 2003, astro-ph/0307463.

[47]  A. Liddle,et al.  How long before the end of inflation were observable perturbations produced , 2003, astro-ph/0305263.

[48]  S. Dodelson,et al.  Horizon ratio bound for inflationary fluctuations. , 2003, Physical review letters.

[49]  D. J. Fixsen,et al.  The Spectral Results of the Far-Infrared Absolute Spectrophotometer Instrument on COBE , 2002 .

[50]  T. Moroi,et al.  Effects of cosmological moduli fields on cosmic microwave background , 2001, hep-ph/0110096.

[51]  D. Lyth,et al.  Generating the curvature perturbation without an inflaton , 2001, hep-ph/0110002.

[52]  K. Enqvist,et al.  Adiabatic CMB perturbations in pre - big bang string cosmology , 2001, hep-ph/0109214.

[53]  Karim A. Malik,et al.  A New approach to the evolution of cosmological perturbations on large scales , 2000, astro-ph/0003278.

[54]  M. Maggiore Gravitational wave experiments and early universe cosmology , 1999, gr-qc/9909001.

[55]  Andrei Linde,et al.  Nongaussian Isocurvature Perturbations from Inflation , 1996, astro-ph/9610219.

[56]  Ivanov,et al.  Inflation and primordial black holes as dark matter. , 1994, Physical review. D, Particles and fields.

[57]  Yokoyama,et al.  Equilibrium state of a self-interacting scalar field in the de Sitter background. , 1994, Physical review. D, Particles and fields.

[58]  K. Nakao,et al.  Classical behavior of a scalar field in the inflationary universe , 1988 .

[59]  M. Sasaki,et al.  Stochastic stage of an inflationary universe model , 1987 .

[60]  L. Abbott,et al.  Particle production in the new inflationary cosmology , 1982 .

[61]  Andrei Linde,et al.  Baryon asymmetry in the inflationary universe , 1982 .

[62]  F. Wilczek,et al.  Reheating an inflationary universe , 1982 .

[63]  A. Starobinsky STOCHASTIC DE SITTER (INFLATIONARY) STAGE IN THE EARLY UNIVERSE , 1986 .