Constraints over Structured Domains

Publisher Summary The chapter presents higher level modeling facilities utilizing constraints over structured domains. It addresses the bin-packing problem. The main constrained objects are the different bins, each describing a collection of unordered distinct elements, subject to disjointness constraints among them, weight constraints reflecting on each bin capacity and possible cardinality restrictions on the number of items allowed in each bin. Such objects are structured in the sense that they involve more than one element in a specific setting. It discusses that a wide range of combinatorial search problems find a natural formulation in the language of sets, multisets, strings, functions, graphs or other structured objects. Bin-packing, set partitioning, set covering, combinatorial design problems, circuits and mapping problems are some of them. They are non-deterministic polynomial-time (NP)-complete problems originating from areas as diverse as combinatorial mathematics, operations research or artificial intelligence. These problems deal essentially with the search for discrete structured objects. While a high-level modeling approach seems more natural, many solutions have exploited the effectiveness of finite domains or mixed integer programming solvers.

[1]  Barbara M. Smith Symmetry and Search in a Network Design Problem , 2005, CPAIOR.

[2]  Robert A. Kowalski,et al.  Predicate Logic as Programming Language , 1974, IFIP Congress.

[3]  P. Hall On Representatives of Subsets , 1935 .

[4]  Yves Deville,et al.  CP(Graph): Introducing a Graph Computation Domain in Constraint Programming , 2005, CP.

[5]  Pascal Van Hentenryck,et al.  The Constraint Logic Programming Language CHIP , 1988, FGCS.

[6]  Gary B. Wills,et al.  The Designers' Workbench: Using Ontologies and Constraints for Configuration , 2004, SGAI Conf..

[7]  Randal E. Bryant,et al.  Symbolic Boolean manipulation with ordered binary-decision diagrams , 1992, CSUR.

[8]  Yves Deville,et al.  CP(Graph+Map) for Approximate Graph Matching , 2005 .

[9]  Gilles Pesant,et al.  A Regular Language Membership Constraint for Finite Sequences of Variables , 2004, CP.

[10]  Jean-Raymond Abrial,et al.  The B-book - assigning programs to meanings , 1996 .

[11]  François Laburhe CHOCO: implementing a CP kernel , 2007 .

[12]  Andrew John Sadler Strengthening finite set constraint solvers through active use of problem structure, symmetries and cardinality restrictions , 2005 .

[13]  Carmen Gervet,et al.  Global Filtering for the Disjointness Constraint on Fixed Cardinality Sets , 2004 .

[14]  Pascal Van Hentenryck Constraint satisfaction in logic programming , 1989, Logic programming.

[15]  C. Colbourn,et al.  CORR 99-01 Applications of Combinatorial Designs to Communications , Cryptography , and Networking , 1999 .

[16]  Fabrice Bouquet,et al.  CLPS–B – A constraint solver to animate a B specification , 2004, International Journal on Software Tools for Technology Transfer.

[17]  Frédéric Benhamou,et al.  Interval Constraint Logic Programming , 1994, Constraint Programming.

[18]  Andreas Podelski,et al.  Constraint Programming: Basics and Trends , 1995, Lecture Notes in Computer Science.

[19]  Richard Fikes,et al.  REF-ARF: A System for Solving Problems Stated as Procedures , 1970, Artif. Intell..

[20]  M. W. Shields An Introduction to Automata Theory , 1988 .

[21]  J. Cheney,et al.  A sequent calculus for nominal logic , 2004, LICS 2004.

[22]  Joxan Jaffar,et al.  A decision procedure for a class of set constraints , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[23]  Pascal Van Hentenryck The OPL optimization programming language , 1999 .

[24]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[25]  Agostino Dovier,et al.  {log}: A Logic Programming Language with Finite Sets , 1991, ICLP.

[26]  Carmen Gervet,et al.  Conjunto: Constraint Logic Programming with Finite Set Domains , 1994, ILPS.

[27]  Carmen Gervet,et al.  Interval propagation to reason about sets: Definition and implementation of a practical language , 1997, Constraints.

[28]  Tobias Müller,et al.  Constraint propagation in Mozart , 2001 .

[29]  M. H. van Emden,et al.  Interval Computation as Deduction in CHIP , 1993, J. Log. Program..

[30]  Carmen Gervet Sets and Binary Relation Variables Viewed as Constrained Objects , 1993, ICLP Workshop on Logic Programming with Sets.

[31]  Toby Walsh,et al.  Disjoint, Partition and Intersection Constraints for Set and Multiset Variables , 2004, CP.

[32]  Peter J. Stuckey,et al.  Set Bounds and (Split) Set Domain Propagation Using ROBDDs , 2004, Australian Conference on Artificial Intelligence.

[33]  Catriel Beeri,et al.  Set Constructors in a Logic Database Language , 1991, J. Log. Program..

[34]  Carmen Gervet,et al.  Hybrid Set Domains to Strengthen Constraint Propagation and Reduce Symmetries , 2004, CP.

[35]  Peter J. Stuckey,et al.  Solving Set Constraint Satisfaction Problems using ROBDDs , 2005, J. Artif. Intell. Res..

[36]  A. Colmerauer,et al.  Prolog, bases théoriques et développements actuels , 1983 .

[37]  Bruno Legeard,et al.  Deciding in HFS-Theory via Linear Integer Programming , 1993, LPAR.

[38]  Harald Ganzinger,et al.  Set constraints are the monadic class , 1993, [1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science.

[39]  Jean-Charles Régin,et al.  A Filtering Algorithm for Global Sequencing Constraints , 1997, CP.

[40]  Jean-Louis Laurière,et al.  A Language and a Program for Stating and Solving Combinatorial Problems , 1978, Artif. Intell..

[41]  Carmen Gervet New structures of symbolic constraint objects: sets and graphs , 1993 .

[42]  James M. Crawford,et al.  Symmetry-Breaking Predicates for Search Problems , 1996, KR.

[43]  Pierre Flener,et al.  Compiling High-Level Type Constructors in Constraint Programming , 2001, PADL.

[44]  Brahim Hnich,et al.  Function Variables for Constraint Programming , 2003 .

[45]  Toby Walsh,et al.  Beyond Finite Domains: The All Different and Global Cardinality Constraints , 2005, CP.

[46]  Peter J. Stuckey,et al.  Set Domain Propagation Using ROBDDs , 2004, CP.

[47]  A. Sadler,et al.  Global reasoning on sets , 2001 .

[48]  Francisco Azevedo,et al.  Thesis: Constraint solving over multi-valued logics - application to digital circuits , 2002, AI Commun..

[49]  Keith Golden,et al.  Constraint Reasoning over Strings , 2003, CP.

[50]  Pascal Brisset,et al.  FaCiLe : a Functional Constraint Library , 2001 .

[51]  François Laburthe Constraints over Ontologies , 2003, CP.

[52]  Kiziltan Zeynep,et al.  Constraint Programming with Multisets , 2002 .

[53]  Martin Müller,et al.  Finite Set Constraints in Oz , 1997 .

[54]  John C. Reynolds,et al.  Automatic computation of data set definitions , 1968, IFIP Congress.

[55]  Toby Walsh,et al.  The Tractability of Global Constraints , 2004, CP.

[56]  Alan K. Mackworth Consistency in Networks of Relations , 1977, Artif. Intell..

[57]  Serge Le Huitouze A New Data Structure for Implementing Extensions to Prolog , 1990, PLILP.

[58]  Paliath Narendran,et al.  NP-Completeness of the Set Unification and Matching Problems , 1986, CADE.

[59]  Edith Schonberg,et al.  Programming with Sets , 1986, Texts and Monographs in Computer Science.

[60]  Gabriel M. Kuper,et al.  Logic programming with sets , 1987, J. Comput. Syst. Sci..

[61]  Bruno Legeard,et al.  Short Overview of the CLPS System , 1991, PLILP.

[62]  Agostino Dovier,et al.  Sets and constraint logic programming , 2000, TOPL.

[63]  Alexander Aiken,et al.  Set Constraints: Results, Applications, and Future Directions , 1994, PPCP.

[64]  Agostino Dovier,et al.  A Language for Programming in Logic with Finite Sets , 1996, J. Log. Program..

[65]  Jean-Charles Régin,et al.  Generalized Arc Consistency for Global Cardinality Constraint , 1996, AAAI/IAAI, Vol. 1.

[66]  André Vellino,et al.  Constraint Arithmetic on Real Intervals , 1993, WCLP.

[67]  Pascal Brisset,et al.  Solving the Kirkman's Schoolgirl Problem in a Few Seconds , 2002, CP.

[68]  Toby Walsh,et al.  Breaking Row and Column Symmetries in Matrix Models , 2002, CP.

[69]  Ian Miguel,et al.  The Rules of Constraint Modelling , 2005, IJCAI.

[70]  Frieder Stolzenburg,et al.  Membership-Constraints and Complexity in Logic Programming with Sets , 1996, FroCoS.

[71]  Carlo Zaniolo,et al.  Compilation of Set Terms in the Logic Data Language (LDL) , 1992, J. Log. Program..

[72]  Toby Walsh,et al.  Consistency and Propagation with Multiset Constraints: A Formal Viewpoint , 2003, CP.

[73]  Patricia M. Hill,et al.  An interval constraint system for lattice domains , 2004, TOPL.

[74]  Alexander Rosa,et al.  Topics on Steiner systems , 1980 .