Programming problems with pseudo-monotonic objectives

A linearization technique has been developed and used to solve the following problems each of which has pseudo-monotonic objective function all integer and mixed integer programs, zero-one programs, transportation, assignment and travelling salesman problems, set covering and set partitioning problems.

[1]  K. Swarup SOME ASPECTS OF LINEAR FRACTIONAL FUNCTIONALS PROGRAMMING , 1965 .

[2]  G. Nemhauser,et al.  Integer Programming , 2020 .

[3]  H. D. Ratliff,et al.  Set Covering and Involutory Bases , 1971 .

[4]  E. M. L. Beale,et al.  Nonlinear and Dynamic Programming , 1965 .

[5]  H. Mine,et al.  A PRIMAL CUTTING PLANE ALGORITHM FOR INTEGER FRACTIONAL PROGRAMMING PROBLEMS , 1976 .

[6]  Y. Anzai ON INTEGER FRACTIONAL PROGRAMMING , 1974 .

[7]  F. Glover A Multiphase-Dual Algorithm for the Zero-One Integer Programming Problem , 1965 .

[8]  Robert S. Garfinkel,et al.  Minimizing Wallpaper Waste, Part 1: A Class of Traveling Salesman Problems , 1977, Oper. Res..

[9]  Charles S. ReVelle,et al.  The Location of Emergency Service Facilities , 1971, Oper. Res..

[10]  H. Taha An Algorithm for Zero-One Fractional Programming , 1975 .

[11]  M. Florian,et al.  Programmation hyperbolique en variables bivalentes , 1971 .

[12]  Kurt Spielberg,et al.  Set Covering by Single-Branch Enumeration with Linear-Programming Subproblems , 1971, Oper. Res..

[13]  Ralph E. Gomory,et al.  An algorithm for integer solutions to linear programs , 1958 .

[14]  D. H. Marks,et al.  An Analysis of Private and Public Sector Location Models , 1970 .

[15]  Paul A. Jensen,et al.  Optimum Network Partitioning , 1971, Oper. Res..

[16]  M. Grunspan,et al.  Hyperbolic integer programming , 1973 .

[17]  M. C. Puri,et al.  Enumeration Technique for the Set Covering Problem with a Linear Fractional Functional as its Objective Function , 1977 .

[18]  Harvey M. Salkin,et al.  Integer Programming , 2019, Engineering Optimization Theory and Practice.

[19]  Javier Etcheberry,et al.  The Set-Covering Problem: A New Implicit Enumeration Algorithm , 1977, Oper. Res..

[20]  C. R. Bector,et al.  Pseudo‐monotonic interval programming , 1978 .

[21]  E. Lawler Covering Problems: Duality Relations and a New Method of Solution , 1966 .

[22]  Jan Karel Lenstra,et al.  Some Simple Applications of the Travelling Salesman Problem , 1975 .

[23]  E. Balas An Additive Algorithm for Solving Linear Programs with Zero-One Variables , 1965 .

[24]  A. M. Geoffrion Integer Programming by Implicit Enumeration and Balas’ Method , 1967 .

[25]  Bela Martos,et al.  Nonlinear programming theory and methods , 1977 .

[26]  Egon Balas,et al.  On the Set-Covering Problem: II. An Algorithm for Set Partitioning , 1972, Oper. Res..

[27]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[28]  R. Gomory AN ALGORITHM FOR THE MIXED INTEGER PROBLEM , 1960 .

[29]  Kenneth O. Kortanek,et al.  Pseudo-Concave Programming and Lagrange Regularity , 1967, Oper. Res..

[30]  George L. Nemhauser,et al.  The Set-Partitioning Problem: Set Covering with Equality Constraints , 1969, Oper. Res..