Recombinant VEGF-C (Cys156Ser) improves mesenteric lymphatic drainage and gut immune surveillance in experimental cirrhosis

[1]  G. D’Amico,et al.  Corrigendum to 'Towards a new definition of decompensated cirrhosis' [J Hepatol 76 (2022) 202-207]. , 2022, Journal of hepatology.

[2]  D. Weissman,et al.  Nucleoside-modified VEGFC mRNA induces organ-specific lymphatic growth and reverses experimental lymphedema , 2021, Nature Communications.

[3]  H. Qian,et al.  Implications of lymphatic alterations in the pathogenesis and treatment of inflammatory bowel disease. , 2021, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[4]  H. Fukui Leaky Gut and Gut-Liver Axis in Liver Cirrhosis: Clinical Studies Update , 2020, Gut and liver.

[5]  M. McConnell,et al.  Enhanced meningeal lymphatic drainage ameliorates neuroinflammation and hepatic encephalopathy in cirrhotic rats , 2020, bioRxiv.

[6]  A. de Gottardi,et al.  The gut-liver axis in liver disease: pathophysiological basis for therapy. , 2020, Journal of hepatology.

[7]  T. H. Nguyen,et al.  The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017 , 2020, The lancet. Gastroenterology & hepatology.

[8]  Ho Eun Park,et al.  Secondary Lymphedema After Intestinal Tuberculosis: A Case Report , 2019, Annals of rehabilitation medicine.

[9]  D. Mcclements,et al.  Oil-in-water Pickering emulsions via microfluidization with cellulose nanocrystals: 1. Formation and stability , 2019, Food Hydrocolloids.

[10]  K. Bhaumik,et al.  Mechanisms of the effectiveness of lipid nanoparticle formulations loaded with anti-tubercular drugs combinations toward overcoming drug bioavailability in tuberculosis , 2019, Journal of drug targeting (Print).

[11]  Jonathan Pillai,et al.  Solid lipid matrix mediated nanoarchitectonics for improved oral bioavailability of drugs , 2019, Expert opinion on drug metabolism & toxicology.

[12]  V. Engelhard,et al.  The Antigen Processing and Presentation Machinery in Lymphatic Endothelial Cells , 2019, Front. Immunol..

[13]  P. Kamath,et al.  Burden of liver diseases in the world. , 2019, Journal of hepatology.

[14]  A. Eichmann,et al.  The Intestinal Lymphatic System: Functions and Metabolic Implications , 2018, Cellular and molecular gastroenterology and hepatology.

[15]  M. Detmar,et al.  Antibody-mediated delivery of VEGF-C potently reduces chronic skin inflammation. , 2018, JCI insight.

[16]  J. Bosch,et al.  Simvastatin Prevents Progression of Acute on Chronic Liver Failure in Rats With Cirrhosis and Portal Hypertension. , 2018, Gastroenterology.

[17]  D. Greaves,et al.  The cardiac lymphatic system stimulates resolution of inflammation following myocardial infarction , 2018, The Journal of clinical investigation.

[18]  E. Schwarz,et al.  Targeting lymphatic function as a novel therapeutic intervention for rheumatoid arthritis , 2018, Nature Reviews Rheumatology.

[19]  G. Tovar,et al.  Controlled Release of Vascular Endothelial Growth Factor from Heparin-Functionalized Gelatin Type A and Albumin Hydrogels , 2017, Gels.

[20]  J. Hubbell,et al.  Local induction of lymphangiogenesis with engineered fibrin-binding VEGF-C promotes wound healing by increasing immune cell trafficking and matrix remodeling. , 2017, Biomaterials.

[21]  T. Petrova,et al.  Intestinal lymphatic vasculature: structure, mechanisms and functions , 2017, Nature Reviews Gastroenterology &Hepatology.

[22]  K. Alitalo,et al.  VEGF-C is required for intestinal lymphatic vessel maintenance and lipid absorption , 2015, EMBO molecular medicine.

[23]  K. Alitalo,et al.  VEGF-C and VEGF-C156S in the pro-lymphangiogenic growth factor therapy of lymphedema: a large animal study , 2015, Angiogenesis.

[24]  M. Simons,et al.  Molecular Controls of Lymphatic VEGFR3 Signaling , 2015, Arteriosclerosis, thrombosis, and vascular biology.

[25]  A. Gandelli,et al.  VEGF-C-dependent stimulation of lymphatic function ameliorates experimental inflammatory bowel disease. , 2014, The Journal of clinical investigation.

[26]  M. Detmar,et al.  Lymphatic vessels: new targets for the treatment of inflammatory diseases , 2014, Angiogenesis.

[27]  K. Maruyama,et al.  The VEGF-C/VEGFR3 signaling pathway contributes to resolving chronic skin inflammation by activating lymphatic vessel function. , 2014, Journal of dermatological science.

[28]  Y. Iwakiri,et al.  The lymphatic vascular system in liver diseases: its role in ascites formation , 2013, Clinical and molecular hepatology.

[29]  Kara F. Held,et al.  Increased nitric oxide production in lymphatic endothelial cells causes impairment of lymphatic drainage in cirrhotic rats , 2012, Gut.

[30]  Hua Song,et al.  Sustained release of VEGF from PLGA nanoparticles embedded thermo-sensitive hydrogel in full-thickness porcine bladder acellular matrix , 2011, Nanoscale research letters.

[31]  H. Freeman,et al.  Intestinal lymphangiectasia in adults. , 2011, World journal of gastrointestinal oncology.

[32]  S. Danese Role of the vascular and lymphatic endothelium in the pathogenesis of inflammatory bowel disease: ‘brothers in arms’ , 2011, Gut.

[33]  R. Francés,et al.  Critical role of the liver in the induction of systemic inflammation in rats with preascitic cirrhosis , 2010, Hepatology.

[34]  M. Detmar,et al.  Activation of the VEGFR-3 pathway by VEGF-C attenuates UVB-induced edema formation and skin inflammation by promoting lymphangiogenesis. , 2009, The Journal of investigative dermatology.

[35]  A. Macpherson,et al.  Mesenteric lymph nodes at the center of immune anatomy , 2006, The Journal of experimental medicine.

[36]  T. Veikkola,et al.  Lymphangiogenic growth factors, receptors and therapies , 2003, Thrombosis and Haemostasis.

[37]  M. Maynar,et al.  Abdominal decompression plays a major role in early postparacentesis haemodynamic changes in cirrhotic patients with tense ascites , 2001, Gut.

[38]  A. West,et al.  Bacterial translocation to mesenteric lymph nodes is increased in cirrhotic rats with ascites. , 1995, Gastroenterology.

[39]  G. Laine,et al.  Intestinal lymphatic flow during portal venous hypertension. , 1989, The American journal of physiology.

[40]  M. Geuking,et al.  Pathological bacterial translocation in liver cirrhosis. , 2014, Journal of hepatology.