Temporal Data Mining for Smart Homes

Temporal data mining is a relatively new area of research in computer science. It can provide a large variety of different methods and techniques for handling and analyzing temporal data generated by smart-home environments. Temporal data mining in general fits into a two level architecture, where initially a transformation technique reduces data dimensionality in the first level and indexing techniques provide efficient access to the data in the second level. This infrastructure of temporal data mining provides the basis for high-level data mining operations such as clustering, classification, rule discovery and prediction. These operations can form the basis for developing different smart-home applications, capable of addressing a number of situations occurring within this environment. This paper outlines the main temporal data mining techniques available and provides examples of where they can be applied within a smart home environment.

[1]  Alberto O. Mendelzon,et al.  Efficient Retrieval of Similar Time Sequences Using DFT , 1998, FODO.

[2]  Jr. G. Forney,et al.  The viterbi algorithm , 1973 .

[3]  Eamonn J. Keogh,et al.  Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases , 2001, Knowledge and Information Systems.

[4]  Toshio Odanaka,et al.  ADAPTIVE CONTROL PROCESSES , 1990 .

[5]  Alain Polguère,et al.  Bilingual Generation of Weather Forecasts in an Operations Environment , 1990, COLING.

[6]  S. Chiba,et al.  Dynamic programming algorithm optimization for spoken word recognition , 1978 .

[7]  Rajeev Motwani,et al.  Dynamic itemset counting and implication rules for market basket data , 1997, SIGMOD '97.

[8]  Dimitrios Gunopulos,et al.  Finding Similar Time Series , 1997, PKDD.

[9]  Donald J. Berndt,et al.  Using Dynamic Time Warping to Find Patterns in Time Series , 1994, KDD Workshop.

[10]  Thomas Kolarik,et al.  Time series forecasting using neural networks , 1994, APL '94.

[11]  J. van Leeuwen,et al.  Grammatical Inference: Algorithms and Applications , 2000, Lecture Notes in Computer Science.

[12]  Eamonn J. Keogh,et al.  Finding surprising patterns in a time series database in linear time and space , 2002, KDD.

[13]  Rüdiger Wirth,et al.  Discovery of Association Rules over Ordinal Data: A New and Faster Algorithm and Its Application to Basket Analysis , 1998, PAKDD.

[14]  Yun-tao Qian,et al.  Markov model based time series similarity measuring , 2003, Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.03EX693).

[15]  Vipin Kumar,et al.  Scalable parallel data mining for association rules , 1997, SIGMOD '97.

[16]  Mykola Galushka,et al.  Efficient Similarity Determination and Case Construction Techniques for Case-Based Reasoning , 2002, ECCBR.

[17]  M. Medeiros,et al.  Building Neural Network Models for Time Series: A Statistical Approach , 2002 .

[18]  Kazuo Asakawa,et al.  Stock market prediction system with modular neural networks , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[19]  R. Bellman,et al.  V. Adaptive Control Processes , 1964 .

[20]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[21]  Agnar Aamodt,et al.  Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches , 1994, AI Commun..

[22]  Heikki Mannila,et al.  Global partial orders from sequential data , 2000, KDD '00.

[23]  E. M. Wright,et al.  Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.

[24]  Heikki Mannila,et al.  Discovering Frequent Episodes in Sequences , 1995, KDD.

[25]  Hui Zhang,et al.  A Non-parametric Wavelet Feature Extractor for Time Series Classification , 2004, PAKDD.

[26]  Cláudia Antunes,et al.  Temporal Data Mining: an overview , 2001 .

[27]  Diane J. Cook,et al.  Improving home automation by discovering regularly occurring device usage patterns , 2003, Third IEEE International Conference on Data Mining.

[28]  Barry Smyth,et al.  Advances in Case-Based Reasoning , 1996, Lecture Notes in Computer Science.

[29]  Janet L. Kolodner,et al.  Case-Based Reasoning , 1989, IJCAI 1989.

[30]  Srinivasan Parthasarathy,et al.  New Algorithms for Fast Discovery of Association Rules , 1997, KDD.

[31]  Miquel Sànchez-Marrè,et al.  Nearest-Neighbours for Time Series , 2004, Applied Intelligence.

[32]  Philip S. Yu,et al.  An effective hash-based algorithm for mining association rules , 1995, SIGMOD '95.

[33]  Rushed Kanawati,et al.  COBRA: A CBR-Based Approach for Predicting Users Actions in a Web Site , 2001, ICCBR.

[34]  John F. Roddick,et al.  A Survey of Temporal Knowledge Discovery Paradigms and Methods , 2002, IEEE Trans. Knowl. Data Eng..

[35]  Jaideep Srivastava,et al.  Event detection from time series data , 1999, KDD '99.

[36]  Oliver Günther,et al.  Multidimensional access methods , 1998, CSUR.

[37]  Philip S. Yu,et al.  Adaptive query processing for time-series data , 1999, KDD '99.

[38]  R. Michalski,et al.  Learning from Observation: Conceptual Clustering , 1983 .

[39]  Daniel A. Keim,et al.  On Knowledge Discovery and Data Mining , 1997 .

[40]  Junshui Ma,et al.  Online novelty detection on temporal sequences , 2003, KDD '03.

[41]  David B. Lomet,et al.  Foundations of Data Organization and Algorithms , 1993, Lecture Notes in Computer Science.

[42]  Rakesh Agrawal,et al.  Parallel Mining of Association Rules , 1996, IEEE Trans. Knowl. Data Eng..

[43]  Eamonn J. Keogh,et al.  An Enhanced Representation of Time Series Which Allows Fast and Accurate Classification, Clustering and Relevance Feedback , 1998, KDD.

[44]  Gregory D. Abowd,et al.  The Aware Home: A Living Laboratory for Ubiquitous Computing Research , 1999, CoBuild.

[45]  Padhraic Smyth,et al.  Deformable Markov model templates for time-series pattern matching , 2000, KDD '00.

[46]  Heikki Mannila,et al.  Principles of Data Mining , 2001, Undergraduate Topics in Computer Science.

[47]  Christos Faloutsos,et al.  Efficient Similarity Search In Sequence Databases , 1993, FODO.

[48]  Douglas H. Fisher,et al.  Knowledge Acquisition Via Incremental Conceptual Clustering , 1987, Machine Learning.

[49]  Michel Jaczynski,et al.  A framework for the management of past experiences with time-extended situations , 1997, CIKM '97.

[50]  David Leake,et al.  Case-Based Reasoning: Experiences, Lessons and Future Directions , 1996 .

[51]  Kyuseok Shim,et al.  Fast Similarity Search in the Presence of Noise, Scaling, and Translation in Time-Series Databases , 1995, VLDB.

[52]  John R. Anderson,et al.  MACHINE LEARNING An Artificial Intelligence Approach , 2009 .

[53]  Giuseppe Psaila,et al.  Querying Shapes of Histories , 1995, VLDB.

[54]  D. Madigan,et al.  Proceedings : KDD-99 : the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 15-18, 1999, San Diego, California, USA , 1999 .

[55]  H. L. Le Roy,et al.  Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .

[56]  Colin de la Higuera,et al.  Grammatical Interference: Learning Syntax from Sentences , 1996, Lecture Notes in Computer Science.

[57]  Larry A. Rendell,et al.  The Feature Selection Problem: Traditional Methods and a New Algorithm , 1992, AAAI.

[58]  Diane J. Cook,et al.  MavHome: an agent-based smart home , 2003, Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003. (PerCom 2003)..

[59]  Eamonn J. Keogh,et al.  A Probabilistic Approach to Fast Pattern Matching in Time Series Databases , 1997, KDD.

[60]  F. Mörchen Time series feature extraction for data mining using DWT and DFT , 2003 .

[61]  Simon Parsons,et al.  Principles of Data Mining by David J. Hand, Heikki Mannila and Padhraic Smyth, MIT Press, 546 pp., £34.50, ISBN 0-262-08290-X , 2004, The Knowledge Engineering Review.

[62]  Heikki Mannila,et al.  Rule Discovery from Time Series , 1998, KDD.

[63]  Agnar Aamodt,et al.  Representing Temporal Knowledge for Case-Based Prediction , 2002, ECCBR.

[64]  Eamonn J. Keogh,et al.  Locally adaptive dimensionality reduction for indexing large time series databases , 2001, SIGMOD '01.