Continuous-wave two-beam coupling in InP:Fe and GaAs: evidence for thermal hole–electron competition in InP:Fe
暂无分享,去创建一个
[1] G. Guillot,et al. Spectres de sections efficaces absolues de photo-ionisation des ions de transition 3d dans InP , 1987 .
[2] Marvin B. Klein,et al. Photorefractive measurement of photoionization and recombination cross sections in InP:Fe , 1988 .
[3] Paul B. Klein,et al. Time-dependent photoluminescence of InP:Fe , 1984 .
[4] G. Pauliat,et al. Optical evidence of a photorefractive effect due to holes in Bi12GeO20 crystals , 1987 .
[5] A. Smirl,et al. Theory of transient energy transfer in gallium arsenide , 1988 .
[6] F. P. Strohkendl. Light‐induced dark decays of photorefractive gratings and their observation in Bi12SiO20 , 1989 .
[7] K. Tada,et al. Electrooptic Properties and Raman Scattering in InP , 1984 .
[8] George C. Valley,et al. Simultaneous electron/hole transport in photorefractive materials , 1986 .
[9] G. Guillot,et al. Deep level spectroscopy in InP:Fe , 1981 .
[10] D. Look. Model for Fe 2+ Intracenter-Induced Photoconductivity in InP: Fe , 1979 .
[11] G. Guillot,et al. Fe deep level optical spectroscopy in InP , 1982 .
[12] R. Hellwarth,et al. Hole - electron competition in photorefractive gratings. , 1986, Optics letters.
[13] G. Valley,et al. Photorefractive characterization of deep level compensation in semi‐insulating GaAs , 1989 .
[14] Philippe Gravey,et al. Theory of two‐wave mixing gain enhancement in photorefractive InP:Fe: A new mechanism of resonance , 1989 .
[15] Arthur L. Smirl,et al. Picosecond pump‐probe technique to measure deep‐level, free‐carrier, and two photon cross sections in GaAs , 1989 .