A new definition of the Adomian polynomials

Purpose – To provide a new proof of convergence of the Adomian decomposition series for solving nonlinear ordinary and partial differential equations based upon a thorough examination of the historical milieu preceding the Adomian decomposition method.Design/methodology/approach – Develops a theoretical background of the Adomian decomposition method under the auspices of the Cauchy‐Kovalevskaya theorem of existence and uniqueness for solution of differential equations. Beginning from the concepts of a parametrized Taylor expansion series as previously introduced in the Murray‐Miller theorem based on analytic parameters, and the Banach‐space analog of the Taylor expansion series about a function instead of a constant as briefly discussed by Cherruault et al., the Adomian decompositions series and the series of Adomian polynomials are found to be a uniformly convergent series of analytic functions for the solution u and the nonlinear composite function f(u). To derive the unifying formula for the family of ...

[1]  Ibrahim L. El-Kalla Error Analysis Of Adomian Series Solution To A Class Of Nonlinear Dierential Equations , 2007 .

[2]  Y Cherruault,et al.  Further remarks on convergence of decomposition method. , 1995, International journal of bio-medical computing.

[3]  George Adomian,et al.  Multiple decompositions for computational convenience , 1990 .

[4]  George Adomian,et al.  Numerical algorithms and decomposition , 1991 .

[5]  Y. Cherruault,et al.  Convergence of Adomian’s method applied to integral equations , 1999 .

[6]  George Adomian,et al.  STOCHASTIC GREEN'S FUNCTIONS, , 1964 .

[7]  Y Cherruault,et al.  Practical formulae for calculation of Adomian's polynomials and application to the convergence of the decomposition method. , 1994, International journal of bio-medical computing.

[8]  George Adomian,et al.  Smooth polynomial expansions of piecewise-differentiable functions , 1989 .

[9]  George Adomian,et al.  On composite nonlinearities and the decomposition method , 1986 .

[10]  George Adomian,et al.  Solving nonlinear differential equations with decimal power nonlinearities , 1986 .

[11]  Abdul-Majid Wazwaz,et al.  A reliable modification of Adomian decomposition method , 1999, Appl. Math. Comput..

[12]  Y. Cherruault Convergence of Adomian's method , 1989 .

[13]  George Adomian,et al.  On the solution of partial differential equations with specified boundary conditions , 1989 .

[14]  Wenhai Chen,et al.  An algorithm for Adomian decomposition method , 2004, Appl. Math. Comput..

[15]  George Adomian,et al.  The decomposition method applied to stiff systems , 1988 .

[16]  Hossein Jafari,et al.  Adomian decomposition: a tool for solving a system of fractional differential equations , 2005 .

[17]  Yves Cherruault,et al.  Convergence of Adomian's Method and Applications to Non‐linear Partial Differential Equations , 1992 .

[18]  Varsha Daftardar-Gejji,et al.  An iterative method for solving nonlinear functional equations , 2006 .

[19]  H. L. Arora,et al.  Solution of non-integer order differential equations via the adomian decomposition method , 1993 .

[20]  G. Adomian Nonlinear stochastic differential equations , 1976 .

[21]  Giuseppe Saccomandi,et al.  New results for convergence of Adomian's method applied to integral equations , 1992 .

[22]  A. Wazwaz Necessary conditions for the appearance of noise terms in decomposition solutions series , 1997 .

[23]  Abdul-Majid Wazwaz,et al.  A new algorithm for calculating adomian polynomials for nonlinear operators , 2000, Appl. Math. Comput..

[24]  Fawzi Abdelwahid,et al.  A mathematical model of Adomian polynomials , 2003, Appl. Math. Comput..

[25]  G. Adomian,et al.  A new algorithm for matching boundary conditions in decomposition solutions , 1993 .

[26]  Y. Cherruault,et al.  New ideas for proving convergence of decomposition methods , 1995 .

[27]  Abdul-Majid Wazwaz,et al.  A new algorithm for solving differential equations of Lane-Emden type , 2001, Appl. Math. Comput..

[28]  Lionel Gabet Modélisation de la diffusion de médicaments à travers les capillaires et dans les tissus à la suite d'une injection et esquisse d'une théorie décompositionnelle et application aux équations aux dérivées partielles , 1992 .

[29]  Československá akademie věd,et al.  Transactions of the Fourth Prague Conference on Information Theory, Statistical Decision Functions, Random Processes, held at Prague, from 31st August to 11th September 1965 , 1967 .

[30]  Y. Cherruault,et al.  Decomposition methods: A new proof of convergence , 1993 .

[31]  George Adomian,et al.  Generalization of adomian polynomials to functions of several variables , 1992 .

[32]  G. Adomian Nonlinear Stochastic Operator Equations , 1986 .

[33]  Nabil T. Shawagfeh,et al.  Analytical approximate solutions for nonlinear fractional differential equations , 2002, Appl. Math. Comput..

[34]  Randolph Rach,et al.  A convenient computational form for the Adomian polynomials , 1984 .

[35]  Y. Cherruault,et al.  Convergence of Adomian's method applied to nonlinear equations , 1994 .

[36]  G. Adomian,et al.  Analytic solution of nonlinear boundary-value problems in several dimensions by decomposition , 1993 .

[37]  L. Gabet,et al.  The theoretical foundation of the Adomian method , 1994 .

[38]  Y. Cherruault,et al.  Convergence of Adomian's method applied to differential equations , 1994 .

[39]  George Adomian,et al.  Nonlinear differential equations with negative power nonlinearities , 1985 .

[40]  George Adomian,et al.  The noisy convergence phenomena in decomposition method solutions , 1986 .

[41]  G. Adomian,et al.  Noise terms in decomposition solution series , 1992 .

[42]  George Adomian,et al.  Solving Frontier Problems of Physics: The Decomposition Method , 1993 .

[43]  George Adomian,et al.  Linear Stochastic Operators , 1963 .

[44]  George Adomian,et al.  Polynomial nonlinearities in differential equations , 1985 .

[45]  George Adomian,et al.  A new approach to boundary value equations and application to a generalization of Airy's equation , 1989 .

[46]  H.-W. Choi,et al.  Symbolic implementation of the algorithm for calculating Adomian polynomials , 2003, Appl. Math. Comput..

[47]  George Adomian,et al.  Modified Adomian Polynomials , 1996 .

[48]  L. Gabet The decomposition method and distributions , 1994 .

[49]  George Adomian,et al.  Numerical integration, analytic continuation, and decomposition , 1997 .

[50]  George Adomian,et al.  Nonlinear Stochastic Systems Theory and Applications to Physics , 1988 .

[51]  Jafar Biazar,et al.  An alternate algorithm for computing Adomian polynomials in special cases , 2003, Appl. Math. Comput..

[52]  金吉 敬人,et al.  Theory of random systems , 1969 .

[53]  Jafar Biazar,et al.  A Maple program for computing Adomian polynomials , 2006 .

[54]  Lionel Gabet The decomposition method and linear partial differential equations , 1993 .

[55]  Esmail Babolian,et al.  New method for calculating Adomian polynomials , 2004, Appl. Math. Comput..

[56]  G. Adomian,et al.  Inversion of nonlinear stochastic operators , 1983 .

[57]  Ahmad Pourdarvish A reliable symbolic implementation of algorithm for calculating Adomian polynomials , 2006, Appl. Math. Comput..

[58]  B. Some Some recent numerical methods for solving nonlinear Hammerstein integral equations , 1993 .

[59]  George Adomian,et al.  Analytic parametrization and the decomposition method , 1989 .

[60]  Zhi-bin Li,et al.  A modified Adomian method for system of nonlinear differential equations , 2007, Appl. Math. Comput..

[61]  Y. Cherruault,et al.  Practical formulae for the calculus of multivariable adomian polynomials , 1995 .

[62]  G. Adomian,et al.  On the analytic solution of the lane-emden equation , 1995 .

[63]  Richard Bellman,et al.  Partial Differential Equations: New Methods for Their Treatment and Solution , 1984 .

[64]  Yonggui Zhu,et al.  A new algorithm for calculating Adomian polynomials , 2005, Appl. Math. Comput..

[65]  Y. Cherruault,et al.  New results of convergence of Adomian’s method , 1999 .