Domain Decomposition–Finite Difference Approximate Inverse Preconditioned Schemes for Solving Fourth-Order Equations

A new class of explicit approximate inverse preconditioning is introduced for solving fourth-order equations, based on the ‘coupled equation approach’, by the domain decomposition method in conjunction with various finite difference approximation schemes. Explicit approximate inverse arrow-type matrix techniques, based on the concept of sparse LU-type factorization procedures, are introduced for computing a class of approximate inverses. Explicit preconditioned conjugate gradient-type schemes are presented for the efficient solution of linear systems. Applications of the method to a biharmonic problem are discussed and numerical results are given.

[1]  Donald Greenspan,et al.  Fast finite-difference solution of biharmonic problems , 1972, Commun. ACM.

[2]  George A. Gravvanis Explicit preconditioned methods for solving 3d boundary-value problems by approximate inverse finite element matrix techniques , 1995, Int. J. Comput. Math..

[3]  Hans Rudolf Schwarz,et al.  Finite Element Methods , 1988 .

[4]  Maksymilian Dryja,et al.  A capacitance matrix method for Dirichlet problem on polygon region , 1982 .

[5]  O. Widlund,et al.  SOLVING ELLIPTIC PROBLEMS ON REGIONS PARTITIONED INTO SUBSTRUCTURES , 1984 .

[6]  J. Ortega Introduction to Parallel and Vector Solution of Linear Systems , 1988, Frontiers of Computer Science.

[7]  George A. Gravvanis Explicit isomorphic iterative methods for solving arrow-type linear systems , 2000, Int. J. Comput. Math..

[8]  George A. Gravvanis Explicit preconditioned conjugate gradient schemes for solving biharmonic equations , 2000 .

[9]  M. Dryja,et al.  A finite element — Capacitance method for elliptic problems on regions partitioned into subregions , 1984 .

[10]  George A. Gravvanis,et al.  An approximate inverse matrix technique for arrowhead matrices , 1998, Int. J. Comput. Math..

[11]  Cornelis Vuik,et al.  GMRESR: a family of nested GMRES methods , 1994, Numer. Linear Algebra Appl..

[12]  George A. Gravvanis The rate of convergence of explicit approximate inverse preconditioning , 1996, Int. J. Comput. Math..

[13]  D. Evans Preconditioning Methods: Theory and Applications , 1983 .

[14]  W. S. Yousif,et al.  Explicit block iterative method for the solution of the biharmonic equation , 1993 .

[15]  George A. Gravvanis Approximate inverse banded matrix techniques , 1999 .

[16]  George A. Gravvanis A note on the rate of convergence and complexity of domain decomposition approximate inverse preconditioning , 2001 .

[17]  H. V. D. Vorst,et al.  A comparison of some GMRES-like methods , 1992 .

[18]  J. Pasciak,et al.  An iterative method for elliptic problems on regions partitioned into substructures , 1986 .

[19]  Jinchao Xu,et al.  Domain Decomposition Methods in Scientific and Engineering Computing , 1994 .

[20]  Gene H. Golub,et al.  Matrix computations , 1983 .

[21]  Louis W. Ehrlich,et al.  Solving the Biharmonic Equation as Coupled Finite Difference Equations , 1971 .

[22]  B. L. Buzbee,et al.  The Direct Solution of the Biharmonic Equation on Rectangular Regions and the Poisson Equation on Irregular Regions , 1974 .

[23]  J. Pasciak,et al.  The Construction of Preconditioners for Elliptic Problems by Substructuring. , 2010 .

[24]  T. Chan Analysis of preconditioners for domain decomposition , 1987 .

[25]  Louis W. Ehrlich,et al.  Solving the biharmonic equation in a square: a direct versus a semidirect method , 1973, CACM.

[26]  Marcus J. Grote,et al.  Parallel Preconditioning with Sparse Approximate Inverses , 1997, SIAM J. Sci. Comput..

[27]  O. Axelsson Notes on the Numerical Solution of the Biharmonic Equation , 1973 .