Low-Rank Approximation of Tensors

In many applications such as data compression, imaging or genomic data analysis, it is important to approximate a given tensor by a tensor that is sparsely representable. For matrices, i.e. 2-tensors, such a representation can be obtained via the singular value decomposition, which allows to compute best rank k-approximations. For very big matrices a low rank approximation using SVD is not computationally feasible. In this case different approximations are available. It seems that variants of the CUR-decomposition are most suitable. For d-mode tensors \(\mathcal{T} \in \otimes _{i=1}^{d}\mathbb{R}^{n_{i}}\), with d > 2, many generalizations of the singular value decomposition have been proposed to obtain low tensor rank decompositions. The most appropriate approximation seems to be best (r 1, …, r d )-approximation, which maximizes the l 2 norm of the projection of \(\mathcal{T}\) on ⊗ i = 1 d U i , where U i is an r i -dimensional subspace \(\mathbb{R}^{n_{i}}\). One of the most common methods is the alternating maximization method (AMM). It is obtained by maximizing on one subspace U i , while keeping all other fixed, and alternating the procedure repeatedly for i = 1, …, d. Usually, AMM will converge to a local best approximation. This approximation is a fixed point of a corresponding map on Grassmannians. We suggest a Newton method for finding the corresponding fixed point. We also discuss variants of CUR-approximation method for tensors. The first part of the paper is a survey on low rank approximation of tensors. The second new part of this paper is a new Newton method for best (r 1, …, r d )-approximation. We compare numerically different approximation methods.

[1]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[2]  S. Goreinov,et al.  How to find a good submatrix , 2010 .

[3]  Yinchu Zhu,et al.  Breaking the curse of dimensionality in regression , 2017, ArXiv.

[4]  Göran Bergqvist,et al.  Exact probabilities for typical ranks of 2 × 2 × 2 and 3 × 3 × 2 tensors , 2013 .

[5]  Berkant Savas,et al.  A Newton-Grassmann Method for Computing the Best Multilinear Rank-(r1, r2, r3) Approximation of a Tensor , 2009, SIAM J. Matrix Anal. Appl..

[6]  Lek-Heng Lim,et al.  Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..

[7]  Ivan Oseledets,et al.  A new tensor decomposition , 2009 .

[8]  Lars Grasedyck,et al.  Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..

[9]  Christopher J. Hillar,et al.  Most Tensor Problems Are NP-Hard , 2009, JACM.

[10]  Shmuel Friedland,et al.  Nonnegative definite hermitian matrices with increasing principal minors , 2013, 1301.4665.

[11]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[12]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[13]  S. Goreinov,et al.  The maximum-volume concept in approximation by low-rank matrices , 2001 .

[14]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[15]  Shmuel Friedland,et al.  Fast Monte-Carlo low rank approximations for matrices , 2006, 2006 IEEE/SMC International Conference on System of Systems Engineering.

[16]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[17]  Petros Drineas,et al.  FAST MONTE CARLO ALGORITHMS FOR MATRICES III: COMPUTING A COMPRESSED APPROXIMATE MATRIX DECOMPOSITION∗ , 2004 .

[18]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[19]  G. W. Stewart,et al.  On the Early History of the Singular Value Decomposition , 1993, SIAM Rev..

[20]  Renato Pajarola,et al.  On best rank one approximation of tensors , 2013, Numer. Linear Algebra Appl..

[21]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[22]  Gene H. Golub,et al.  Rank-One Approximation to High Order Tensors , 2001, SIAM J. Matrix Anal. Appl..

[23]  V. Mehrmann,et al.  Best subspace tensor approximations , 2008, 0805.4220.

[24]  W. Hackbusch Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.

[25]  Berkant Savas,et al.  Quasi-Newton Methods on Grassmannians and Multilinear Approximations of Tensors , 2009, SIAM J. Sci. Comput..

[26]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[27]  Anatoli Torokhti,et al.  Generalized Rank-Constrained Matrix Approximations , 2007, SIAM J. Matrix Anal. Appl..

[28]  Eugene E. Tyrtyshnikov,et al.  Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..

[29]  S. Goreinov,et al.  A Theory of Pseudoskeleton Approximations , 1997 .

[30]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[31]  J. Berge,et al.  Simplicity of core arrays in three-way principal component analysis and the typical rank of p×q×2 arrays , 1999 .

[32]  Shmuel Friedland,et al.  The Number of Singular Vector Tuples and Uniqueness of Best Rank-One Approximation of Tensors , 2012, Found. Comput. Math..

[33]  Tamás Sarlós,et al.  Improved Approximation Algorithms for Large Matrices via Random Projections , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[34]  D. Sorensen,et al.  4. The Implicitly Restarted Arnoldi Method , 1998 .

[35]  Wolfgang Hackbusch,et al.  Tensorisation of vectors and their efficient convolution , 2011, Numerische Mathematik.

[36]  Santosh S. Vempala,et al.  Adaptive Sampling and Fast Low-Rank Matrix Approximation , 2006, APPROX-RANDOM.

[37]  Dimitris Achlioptas,et al.  Fast computation of low rank matrix approximations , 2001, STOC '01.

[38]  S. Friedland,et al.  Fast low rank approximations of matrices and tensors , 2011 .

[39]  S. Friedland Best rank one approximation of real symmetric tensors can be chosen symmetric , 2011, 1110.5689.

[40]  Daniel Kressner,et al.  A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.

[41]  Vin de Silva,et al.  Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.

[42]  Petros Drineas,et al.  Tensor-CUR Decompositions for Tensor-Based Data , 2008, SIAM J. Matrix Anal. Appl..

[43]  Mark Rudelson,et al.  Sampling from large matrices: An approach through geometric functional analysis , 2005, JACM.

[44]  Alan M. Frieze,et al.  Fast Monte-Carlo algorithms for finding low-rank approximations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[45]  Petros Drineas,et al.  Fast Monte Carlo Algorithms for Matrices I: Approximating Matrix Multiplication , 2006, SIAM J. Comput..