Low-Rank Approximation of Tensors
暂无分享,去创建一个
[1] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[2] S. Goreinov,et al. How to find a good submatrix , 2010 .
[3] Yinchu Zhu,et al. Breaking the curse of dimensionality in regression , 2017, ArXiv.
[4] Göran Bergqvist,et al. Exact probabilities for typical ranks of 2 × 2 × 2 and 3 × 3 × 2 tensors , 2013 .
[5] Berkant Savas,et al. A Newton-Grassmann Method for Computing the Best Multilinear Rank-(r1, r2, r3) Approximation of a Tensor , 2009, SIAM J. Matrix Anal. Appl..
[6] Lek-Heng Lim,et al. Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..
[7] Ivan Oseledets,et al. A new tensor decomposition , 2009 .
[8] Lars Grasedyck,et al. Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..
[9] Christopher J. Hillar,et al. Most Tensor Problems Are NP-Hard , 2009, JACM.
[10] Shmuel Friedland,et al. Nonnegative definite hermitian matrices with increasing principal minors , 2013, 1301.4665.
[11] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[12] Joos Vandewalle,et al. On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..
[13] S. Goreinov,et al. The maximum-volume concept in approximation by low-rank matrices , 2001 .
[14] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[15] Shmuel Friedland,et al. Fast Monte-Carlo low rank approximations for matrices , 2006, 2006 IEEE/SMC International Conference on System of Systems Engineering.
[16] Chao Yang,et al. ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.
[17] Petros Drineas,et al. FAST MONTE CARLO ALGORITHMS FOR MATRICES III: COMPUTING A COMPRESSED APPROXIMATE MATRIX DECOMPOSITION∗ , 2004 .
[18] L. Tucker,et al. Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.
[19] G. W. Stewart,et al. On the Early History of the Singular Value Decomposition , 1993, SIAM Rev..
[20] Renato Pajarola,et al. On best rank one approximation of tensors , 2013, Numer. Linear Algebra Appl..
[21] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[22] Gene H. Golub,et al. Rank-One Approximation to High Order Tensors , 2001, SIAM J. Matrix Anal. Appl..
[23] V. Mehrmann,et al. Best subspace tensor approximations , 2008, 0805.4220.
[24] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.
[25] Berkant Savas,et al. Quasi-Newton Methods on Grassmannians and Multilinear Approximations of Tensors , 2009, SIAM J. Sci. Comput..
[26] Ivan Oseledets,et al. Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..
[27] Anatoli Torokhti,et al. Generalized Rank-Constrained Matrix Approximations , 2007, SIAM J. Matrix Anal. Appl..
[28] Eugene E. Tyrtyshnikov,et al. Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..
[29] S. Goreinov,et al. A Theory of Pseudoskeleton Approximations , 1997 .
[30] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[31] J. Berge,et al. Simplicity of core arrays in three-way principal component analysis and the typical rank of p×q×2 arrays , 1999 .
[32] Shmuel Friedland,et al. The Number of Singular Vector Tuples and Uniqueness of Best Rank-One Approximation of Tensors , 2012, Found. Comput. Math..
[33] Tamás Sarlós,et al. Improved Approximation Algorithms for Large Matrices via Random Projections , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[34] D. Sorensen,et al. 4. The Implicitly Restarted Arnoldi Method , 1998 .
[35] Wolfgang Hackbusch,et al. Tensorisation of vectors and their efficient convolution , 2011, Numerische Mathematik.
[36] Santosh S. Vempala,et al. Adaptive Sampling and Fast Low-Rank Matrix Approximation , 2006, APPROX-RANDOM.
[37] Dimitris Achlioptas,et al. Fast computation of low rank matrix approximations , 2001, STOC '01.
[38] S. Friedland,et al. Fast low rank approximations of matrices and tensors , 2011 .
[39] S. Friedland. Best rank one approximation of real symmetric tensors can be chosen symmetric , 2011, 1110.5689.
[40] Daniel Kressner,et al. A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.
[41] Vin de Silva,et al. Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.
[42] Petros Drineas,et al. Tensor-CUR Decompositions for Tensor-Based Data , 2008, SIAM J. Matrix Anal. Appl..
[43] Mark Rudelson,et al. Sampling from large matrices: An approach through geometric functional analysis , 2005, JACM.
[44] Alan M. Frieze,et al. Fast Monte-Carlo algorithms for finding low-rank approximations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).
[45] Petros Drineas,et al. Fast Monte Carlo Algorithms for Matrices I: Approximating Matrix Multiplication , 2006, SIAM J. Comput..