Adaptive independent Metropolis–Hastings

We propose an adaptive independent Metropolis--Hastings algorithm with the ability to learn from all previous proposals in the chain except the current location. It is an extension of the independent Metropolis--Hastings algorithm. Convergence is proved provided a strong Doeblin condition is satisfied, which essentially requires that all the proposal functions have uniformly heavier tails than the stationary distribution. The proof also holds if proposals depending on the current state are used intermittently, provided the information from these iterations is not used for adaption. The algorithm gives samples from the exact distribution within a finite number of iterations with probability arbitrarily close to 1. The algorithm is particularly useful when a large number of samples from the same distribution is necessary, like in Bayesian estimation, and in CPU intensive applications like, for example, in inverse problems and optimization.

[1]  李幼升,et al.  Ph , 1989 .

[2]  Charles J. Geyer,et al.  Practical Markov Chain Monte Carlo , 1992 .

[3]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[4]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[5]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[6]  Jun S. Liu,et al.  Metropolized independent sampling with comparisons to rejection sampling and importance sampling , 1996, Stat. Comput..

[7]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[8]  Lars Holden,et al.  Geometric convergence of the Metropolis-Hastings simulation algorithm , 1998 .

[9]  G. Roberts,et al.  Adaptive Markov Chain Monte Carlo through Regeneration , 1998 .

[10]  Gareth O. Roberts,et al.  Markov‐chain monte carlo: Some practical implications of theoretical results , 1998 .

[11]  Jack P. C. Kleijnen,et al.  A methodology for fitting and validating metamodels in simulation , 2000, Eur. J. Oper. Res..

[12]  H. Tjelmeland,et al.  Mode Jumping Proposals in MCMC , 2001 .

[13]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[14]  Jeong-Soo Park,et al.  Estimation of input parameters in complex simulation using a Gaussian process metamodel , 2002 .

[15]  G. Roberts,et al.  Tempered Langevin diffusions and algorithms , 2002 .

[16]  J. Gåsemyr On an adaptive version of the Metropolis-Hastings algorithm with independent proposal distribution , 2003 .

[17]  H. Rue,et al.  Norges Teknisk-naturvitenskapelige Universitet Approximating Hidden Gaussian Markov Random Fields Approximating Hidden Gaussian Markov Random Fields , 2003 .

[18]  J. Rosenthal,et al.  On adaptive Markov chain Monte Carlo algorithms , 2005 .

[19]  Jeffrey S. Rosenthal,et al.  Coupling and Ergodicity of Adaptive MCMC , 2007 .