ASSESSING THE IMPACT OF HAPTIC PERIPHERAL DISPLAYS FOR UAV OPERATORS

Abstract : A future implementation of unmanned aerial vehicle "UAV" operations is having a single operator control multiple UAVs. The research presented here explores possible avenues of enhancing audio cues of UAV interfaces for this futuristic control of multiple UAVs by a single operator. This project specifically evaluates the value of continuous and discrete audio cues as indicators of course deviations or late arrivals to targets for UAV missions. It also looks at the value of the audio cues in single and multiple UAV scenarios. To this end, an experiment was carried out on the Multiple Autonomous Unmanned Vehicle Experimental "MAUVE" test bed developed in the Humans and Automation Laboratory at the Massachusetts Institute of Technology with 44 military participants. Specifically, two continuous audio alerts were mapped to two human supervisory tasks within MAUVE. One of the continuous audio alerts, an oscillating course deviation alert was mapped to UAV course deviations which occurred over a continual scale. The other continuous audio alert tested was a modulated late arrival alert which alerted the operator when a UAV was going to be late to a target. In this case the continuous audio was mapped to a discrete event in that the UAV was either on time or late to a target. The audio was continuous in that it was continually on and alerting the participant to the current state of the UAV. It either was playing a tone indicating the UAV was on time to a target or playing a tone indicating the UAV was late to a target. These continuous alerts were tested against more traditional single beep alerts which acted as discrete alerts. The beeps were discrete in that when they were used for monitoring course deviations a single beep was played when the UAV got to specific threshold off of the course or for late arrivals a single beep was played when the UAV became late.