CANCERTOOL: A Visualization and Representation Interface to Exploit Cancer Datasets.
暂无分享,去创建一个
Iñigo Apaolaza | Francisco J. Planes | Ana M. Aransay | Víctor Quesada | Elizabeth Guruceaga | Verónica Torrano | Arkaitz Carracedo | Xosé R. Bustelo | Ana R. Cortazar | Natalia Martín-Martín | Alfredo Caro-Maldonado | Laura Camacho | Ivana Hermanova | Luis F. Lorenzo-Martín | Ruben Caloto | Roger R. Gomis | Jan Trka | Antonio Gómez-Muñoz | Silvestre Vincent | V. Quesada | R. Gomis | I. Heřmanová | Iñigo Apaolaza | A. Carracedo | J. Trka | A. Gomez-Muñoz | X. Bustelo | A. Aransay | E. Guruceaga | N. Martín-Martín | A. R. Cortázar | V. Torrano | A. Caro-Maldonado | L. F. Lorenzo-Martín | Rubén Caloto | L. Camacho | F. J. Planes | Silvestre Vincent | Natalia Martín-Martín
[1] Chris Sander,et al. An integrated genomic analysis of lung cancer reveals loss of DUSP4 in EGFR-mutant tumors , 2009, Oncogene.
[2] Adam S. Kibel,et al. Integrative molecular concept modeling of prostate cancer progression , 2007 .
[3] I. Heřmanová,et al. Integrative analysis of transcriptomics and clinical data uncovers the tumor-suppressive activity of MITF in prostate cancer , 2018, Cell Death & Disease.
[4] D. Birnbaum,et al. A seven-gene signature aggregates a subgroup of stage II colon cancers with stage III. , 2012, Omics : a journal of integrative biology.
[5] C. Sander,et al. Integrative genomic profiling of human prostate cancer. , 2010, Cancer cell.
[6] J. Hintze,et al. Violin plots : A box plot-density trace synergism , 1998 .
[7] T. Ørntoft,et al. Metastasis-Associated Gene Expression Changes Predict Poor Outcomes in Patients with Dukes Stage B and C Colorectal Cancer , 2009, Clinical Cancer Research.
[8] Mira Ayadi,et al. Gene Expression Classification of Colon Cancer into Molecular Subtypes: Characterization, Validation, and Prognostic Value , 2013, PLoS medicine.
[9] F. Markowetz,et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups , 2012, Nature.
[10] Joshy George,et al. Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer. , 2006, Cancer research.
[11] S. Holm. A Simple Sequentially Rejective Multiple Test Procedure , 1979 .
[12] Satoru Miyano,et al. Identification of genes upregulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas. , 2012, Cancer research.
[13] Benjamin E. Gross,et al. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal , 2013, Science Signaling.
[14] Benjamin J. Raphael,et al. The Mutational Landscape of Lethal Castrate Resistant Prostate Cancer , 2016 .
[15] P. Khatri,et al. An integrative approach unveils FOSL1 as an oncogene vulnerability in KRAS-driven lung and pancreatic cancer , 2017, Nature Communications.
[16] Eugene S. Edgington,et al. An Additive Method for Combining Probability Values from Independent Experiments , 1972 .
[17] Andreas Schlicker,et al. Colorectal cancer intrinsic subtypes predict chemotherapy benefit, deficient mismatch repair and epithelial-to-mesenchymal transition , 2013, International journal of cancer.
[18] John T. Wei,et al. Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. , 2005, Cancer cell.
[19] Cedric E. Ginestet. ggplot2: Elegant Graphics for Data Analysis , 2011 .
[20] T. Barrette,et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. , 2004, Neoplasia.
[21] L. Holmberg,et al. Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts , 2005, Breast Cancer Research.
[22] N. Mantel. Evaluation of survival data and two new rank order statistics arising in its consideration. , 1966, Cancer chemotherapy reports.
[23] Joshua M. Stuart,et al. The Cancer Genome Atlas Pan-Cancer analysis project , 2013, Nature Genetics.
[24] W. Gerald,et al. Gene expression profiling predicts clinical outcome of prostate cancer. , 2004, The Journal of clinical investigation.
[25] O. J. Dunn. Estimation of the Medians for Dependent Variables , 1959 .
[26] Alan D. Lopez,et al. The Global Burden of Disease Study , 2003 .
[27] R. Tibshirani,et al. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[28] R. Versteeg,et al. Mutations in the Ras–Raf Axis Underlie the Prognostic Value of CD133 in Colorectal Cancer , 2012, Clinical Cancer Research.
[29] J. Foekens,et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer , 2005, The Lancet.
[30] M. Roizen,et al. Hallmarks of Cancer: The Next Generation , 2012 .
[31] Matthew D. Wilkerson,et al. Differential Pathogenesis of Lung Adenocarcinoma Subtypes Involving Sequence Mutations, Copy Number, Chromosomal Instability, and Methylation , 2012, PloS one.
[32] Benjamin E. Gross,et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. , 2012, Cancer discovery.
[33] Terence P. Speed,et al. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias , 2003, Bioinform..
[34] Phillip G. Montgomery,et al. Defining a Cancer Dependency Map , 2017, Cell.
[35] Xuesong Lu,et al. Predicting features of breast cancer with gene expression patterns , 2008, Breast Cancer Research and Treatment.
[36] Alex E. Lash,et al. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository , 2002, Nucleic Acids Res..
[37] Igor Jurisica,et al. Gene expression–based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study , 2008, Nature Medicine.
[38] John T. Wei,et al. Integrative molecular concept modeling of prostate cancer progression , 2007, Nature Genetics.
[39] J. Baselga,et al. The Evolving War on Cancer , 2011, Cell.