A Stable Electrolyte Interface with Li3ps4@Li7p3s11 for High-Performance Solid/Liquid Li-S Battery

[1]  Xianluo Hu,et al.  Interface engineering by gelling sulfolane for durable and safe Li/LiCoO2 batteries in wide temperature range , 2022, Science China Materials.

[2]  B. Hwang,et al.  Effect of selected dopants on conductivity and moisture stability of Li3PS4 sulfide solid electrolyte: a first-principles study , 2022, Materials Today Chemistry.

[3]  Liquan Chen,et al.  Polymer Electrolytes Based on Interactions between [Solvent-Li+] Complex and Solvent-Modified Polymer , 2022, SSRN Electronic Journal.

[4]  Wei Wang,et al.  Li7P3S11 electrolyte for all-solid-state lithium-ion batteries: structure, synthesis, and applications , 2022, Chemical Engineering Journal.

[5]  Wen Zhu,et al.  Zr doped NASICON-type LATP glass-ceramic as a super-thin coating onto deoxidized carbon wrapped CNT-S cathode for lithium-sulphur battery , 2022, Electrochimica Acta.

[6]  Fang Wang,et al.  Improving Cycling Stability of the Lithium Anode by a Spin-Coated High-Purity Li3PS4 Artificial SEI Layer. , 2022, ACS applied materials & interfaces.

[7]  Tao Huang,et al.  Double-Protected Layers with Solid-Liquid Hybrid Electrolytes for Long-Cycle-Life Lithium Batteries. , 2022, ACS applied materials & interfaces.

[8]  Hong-li Ma,et al.  Stabilizing Interface between Li2S-P2S5 Glass-Ceramic Electrolyte and Ether Electrolyte by Tuning Solvation Reaction. , 2021, ACS applied materials & interfaces.

[9]  Fang Wang,et al.  A Unique Hierarchical Structure: NiCo2O4 Nanowire Decorated NiO Nanosheets as a Carbon-Free Cathode for Li–O2 Battery , 2021, Catalysis Science & Technology.

[10]  Renjie Chen,et al.  A panoramic view of Li7P3S11 solid electrolytes synthesis, structural aspects and practical challenges for all-solid-state lithium batteries , 2021, Chinese Journal of Chemical Engineering.

[11]  Jiujun Zhang,et al.  Incorporation of lithium halogen in Li7P3S11 glass-ceramic and the interface improvement mechanism , 2021 .

[12]  Shijie Cheng,et al.  Improvement of stability and solid-state battery performances of annealed 70Li2S–30P2S5 electrolytes by additives , 2021, Rare Metals.

[13]  J. M. López del Amo,et al.  High performance LATP thin film electrolytes for all-solid-state microbattery applications , 2021, Journal of Materials Chemistry A.

[14]  Fang Wang,et al.  Stabilizing electrode/electrolyte interface in Li-S batteries using liquid/solid Li2S-P2S5 hybrid electrolyte , 2021 .

[15]  Dong Ha Kim,et al.  The lithium metal anode in Li–S batteries: challenges and recent progress , 2021 .

[16]  Z. Seh,et al.  A Salt‐in‐Metal Anode: Stabilizing the Solid Electrolyte Interphase to Enable Prolonged Battery Cycling , 2021, Advanced Functional Materials.

[17]  Xiao Ji,et al.  Bifunctional Interphase-Enabled Li10GeP2S12 Electrolytes for Lithium–Sulfur Battery , 2021, ACS Energy Letters.

[18]  Feng Li,et al.  Insights into the deposition chemistry of Li ions in nonaqueous electrolyte for stable Li anodes. , 2021, Chemical Society reviews.

[19]  Hong-li Ma,et al.  Will Sulfide Electrolytes be Suitable Candidates for Constructing a Stable Solid/Liquid Electrolyte Interface? , 2020, ACS applied materials & interfaces.

[20]  Feixiang Wu,et al.  Lithium metal anodes: Present and future , 2020, Journal of Energy Chemistry.

[21]  Karim Zaghib,et al.  Sulfide and Oxide Inorganic Solid Electrolytes for All-Solid-State Li Batteries: A Review , 2020, Nanomaterials.

[22]  Xuetian Li,et al.  Synthesis and electrochemical properties of cubic-like ZnMoO4 anode materials , 2020, Journal of Materials Science.

[23]  Yusheng Yang,et al.  P4S10 modified lithium anode for enhanced performance of lithium–sulfur batteries , 2020, Journal of Energy Chemistry.

[24]  Hong-li Ma,et al.  Influence of precipitate/supernatant ratio during liquid-phase synthesis of solid electrolyte Li7P3S11 , 2019, Solid State Ionics.

[25]  S. Misra,et al.  Rapid and Tunable Assisted-Microwave Preparation of Glass and Glass-Ceramic Thiophosphate "Li7P3S11" Li-Ion Conductors. , 2019, ACS applied materials & interfaces.

[26]  Hongli Zhu,et al.  Solid‐State Batteries: Sulfide‐Based Solid‐State Electrolytes: Synthesis, Stability, and Potential for All‐Solid‐State Batteries (Adv. Mater. 44/2019) , 2019, Advanced Materials.

[27]  Lei Wang,et al.  Boron nitride doped Li7P3S11 solid electrolyte with improved interfacial compatibility and application in all-solid-state Li/S battery , 2019, Journal of Materials Science: Materials in Electronics.

[28]  Asma Sharafi,et al.  Interfacial Reactions and Performance of LLZO Stabilized Li-Sulfur Hybrid Cell. , 2019, ACS applied materials & interfaces.

[29]  Juan Yu,et al.  Toward High-Performance Li Metal Anode via Difunctional Protecting Layer , 2019, Frontiers in Chemistry.

[30]  A. Gewirth,et al.  Incorporating Solvate and Solid Electrolytes for All‐Solid‐State Li2S Batteries with High Capacity and Long Cycle Life , 2019, Advanced Energy Materials.

[31]  Jie Zhou,et al.  Deciphering the Modulation Essence of p Bands in Co-Based Compounds on Li-S Chemistry , 2018, Joule.

[32]  Xiulin Fan,et al.  Interface engineering of sulfide electrolytes for all-solid-state lithium batteries , 2018, Nano Energy.

[33]  Yang Zhao,et al.  In Situ Li3PS4 Solid‐State Electrolyte Protection Layers for Superior Long‐Life and High‐Rate Lithium‐Metal Anodes , 2018, Advanced materials.

[34]  Xiaoting Lin,et al.  Boosting the performance of lithium batteries with solid-liquid hybrid electrolytes: Interfacial properties and effects of liquid electrolytes , 2018, Nano Energy.

[35]  Z. Wen,et al.  Pre-modified Li 3 PS 4 based interphase for lithium anode towards high-performance Li-S battery , 2018 .

[36]  M. Hara,et al.  Effect of Excess Li2S on Electrochemical Properties of Amorphous Li3PS4 Films Synthesized by Pulsed Laser Deposition , 2017 .

[37]  F. L. Cras,et al.  Comprehensive characterization of all-solid-state thin films commercial microbatteries by Electrochemical Impedance Spectroscopy , 2016 .

[38]  M. Xiao,et al.  Polymer electrolytes for lithium polymer batteries , 2016 .

[39]  T. Leichtweiss,et al.  Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts. , 2016, Nature chemistry.

[40]  A. Hayashi,et al.  Li4GeS4–Li3PS4 electrolyte thin films with highly ion-conductive crystals prepared by pulsed laser deposition , 2014 .

[41]  Kazunori Takada,et al.  A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries , 2014 .

[42]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[43]  A. Yamada,et al.  Interfacial reactions at electrode/electrolyte boundary in all solid-state lithium battery using inorganic solid electrolyte, thio-LISICON , 2008 .

[44]  M. Osada,et al.  Enhancement of the High‐Rate Capability of Solid‐State Lithium Batteries by Nanoscale Interfacial Modification , 2006 .

[45]  Tsutomu Minami,et al.  Formation of superionic crystals from mechanically milled Li2S–P2S5 glasses , 2003 .

[46]  Dongping Lu,et al.  Wet-chemical synthesis of Li7P3S11 with tailored particle size for solid state electrolytes , 2022, Chemical Engineering Journal.

[47]  P. Chand,et al.  Modeling of electrical behavior of LiFePO4 cathode materials for lithium ion batteries , 2020 .

[48]  Shyue Ping Ong,et al.  Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors , 2013 .