Extensive comparison of physical models for photovoltaic power forecasting

[1]  R. C. Jordan,et al.  Direct solar radiation available on clear days , 1957 .

[2]  B. Liu,et al.  Daily insolation on surfaces tilted towards equator , 1961 .

[3]  H. H. Safwat,et al.  Determination of the optimum orientations for the double-exposure, flat-plate collector and its reflectors , 1966 .

[4]  D. L. Evans,et al.  Cost studies on terrestrial photovoltaic power systems with sunlight concentration , 1977 .

[5]  T. M. Klucher Evaluation of models to predict insolation on tilted surfaces , 1978 .

[6]  Michael H. Unsworth,et al.  The diffuse solar irradiance of slopes under cloudless skies , 1979 .

[7]  J. Duffie,et al.  Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation , 1982 .

[8]  Cort J. Willmott,et al.  On the climatic optimization of the tilt and azimuth of flat-plate solar collectors , 1982 .

[9]  J. Olseth,et al.  Modelling slope irradiance at high latitudes , 1986 .

[10]  C. Gueymard An anisotropic solar irradiance model for tilted surfaces and its comparison with selected engineering algorithms , 1987 .

[11]  A. H. Murphy,et al.  A General Framework for Forecast Verification , 1987 .

[12]  J. Olseth,et al.  A model for the diffuse fraction of hourly global radiation , 1987 .

[13]  R. Seals,et al.  The development and verification of the Perez diffuse radiation model , 1988 .

[14]  A. T. Young,et al.  Revised optical air mass tables and approximation formula. , 1989, Applied optics.

[15]  Tariq Muneer,et al.  Solar radiation model for Europe , 1990 .

[16]  J. Michalsky,et al.  Modeling daylight availability and irradiance components from direct and global irradiance , 1990 .

[17]  W. Beckman,et al.  Evaluation of hourly tilted surface radiation models , 1990 .

[18]  P. Ineichen,et al.  Dynamic global-to-direct irradiance conversion models , 1992 .

[19]  A. H. Murphy Climatology, Persistence, and Their Linear Combination as Standards of Reference in Skill Scores , 1992 .

[20]  N. Martín,et al.  Calculation of the PV modules angular losses under field conditions by means of an analytical model , 2001 .

[21]  P. Ineichen,et al.  A new airmass independent formulation for the Linke turbidity coefficient , 2002 .

[22]  P. Ineichen,et al.  A new operational model for satellite-derived irradiances: description and validation , 2002 .

[23]  I. Reda,et al.  Solar position algorithm for solar radiation applications , 2004 .

[24]  Gilles Notton,et al.  Calculation of the polycrystalline PV module temperature using a simple method of energy balance , 2006 .

[25]  William A. Beckman,et al.  Improvement and validation of a model for photovoltaic array performance , 2006 .

[26]  David Faiman,et al.  Assessing the outdoor operating temperature of photovoltaic modules , 2008 .

[27]  Praveen Jain,et al.  Beyond the curves: Modeling the electrical efficiency of photovoltaic inverters , 2008, 2008 33rd IEEE Photovoltaic Specialists Conference.

[28]  E. Skoplaki,et al.  A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting , 2008 .

[29]  C. Gueymard Direct and indirect uncertainties in the prediction of tilted irradiance for solar engineering applications , 2009 .

[30]  John Boland,et al.  Modelling of diffuse solar fraction with multiple predictors , 2010 .

[31]  M. Heck,et al.  Modeling of the nominal operating cell temperature based on outdoor weathering , 2011 .

[32]  Detlev Heinemann,et al.  Regional PV power prediction for improved grid integration , 2011 .

[33]  E. Dunlop,et al.  A power-rating model for crystalline silicon PV modules , 2011 .

[34]  E. Lorenz,et al.  Local and regional photovoltaic power prediction for large scale grid integration: Assessment of a new algorithm for snow detection , 2012 .

[35]  E. Lorenz,et al.  Chapter 11 – Satellite-Based Irradiance and Power Forecasting for the German Energy Market , 2013 .

[36]  Wolfgang Lehner,et al.  First Steps Towards a Systematical Optimized Strategy for Solar Energy Supply Forecasting , 2013 .

[37]  S. Pelland,et al.  Solar and photovoltaic forecasting through post‐processing of the Global Environmental Multiscale numerical weather prediction model , 2013 .

[38]  Peng Li,et al.  Determining the optimum grid-connected photovoltaic inverter size , 2013 .

[39]  Marc Zebisch,et al.  Wind effect on PV module temperature: Analysis of different techniques for an accurate estimation , 2013 .

[40]  Nicholas A. Engerer Minute resolution estimates of the diffuse fraction of global irradiance for southeastern Australia , 2015 .

[41]  Richard Müller,et al.  Application of Satellite-Based Spectrally-Resolved Solar Radiation Data to PV Performance Studies , 2015 .

[42]  Francisco Manzano-Agugliaro,et al.  Optimal displacement of photovoltaic array’s rows using a novel shading model , 2015 .

[43]  Martin Schmelas,et al.  Photovoltaics Energy Prediction Under Complex Conditions for a Predictive Energy Management System , 2015 .

[44]  Balázs Szintai,et al.  Application of the AROME non-hydrostatic model at the Hungarian Meteorological Service : physical parameterizations and ensemble forecasting , 2015 .

[45]  Yves-Marie Saint-Drenan,et al.  An empirical approach to parameterizing photovoltaic plants for power forecasting and simulation , 2015 .

[46]  Kashif Ishaque,et al.  Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review , 2015 .

[47]  A. Dolara,et al.  Comparison of different physical models for PV power output prediction , 2015 .

[48]  R. Urraca,et al.  Review of photovoltaic power forecasting , 2016 .

[49]  Yan Su,et al.  Forecasting the daily power output of a grid-connected photovoltaic system based on multivariate adaptive regression splines , 2016 .

[50]  Dazhi Yang,et al.  Solar radiation on inclined surfaces: Corrections and benchmarks , 2016 .

[51]  Carlos F.M. Coimbra,et al.  Day-ahead forecasting of solar power output from photovoltaic plants in the American Southwest , 2016 .

[52]  Oliver Kramer,et al.  Comparing support vector regression for PV power forecasting to a physical modeling approach using measurement, numerical weather prediction, and cloud motion data , 2016 .

[53]  J. A. Ruiz-Arias,et al.  Extensive worldwide validation and climate sensitivity analysis of direct irradiance predictions from 1-min global irradiance , 2016 .

[54]  Ryozo Ooka,et al.  Observational study of power-law approximation of wind profiles within an urban boundary layer for various wind conditions , 2017 .

[55]  J. Marcos,et al.  PV performance modelling: A review in the light of quality assurance for large PV plants , 2017 .

[56]  Kari Lappalainen,et al.  Photovoltaic mismatch losses caused by moving clouds , 2017 .

[57]  Francesco Grimaccia,et al.  Analysis and validation of 24 hours ahead neural network forecasting of photovoltaic output power , 2017, Math. Comput. Simul..

[58]  Nicholas A. Engerer,et al.  QCPV: A quality control algorithm for distributed photovoltaic array power output , 2017 .

[59]  O. Perpiñán,et al.  Comparative study of PV power forecast using parametric and nonparametric PV models , 2017 .

[60]  C. Gueymard Cloud and albedo enhancement impacts on solar irradiance using high-frequency measurements from thermopile and photodiode radiometers. Part 1: Impacts on global horizontal irradiance , 2017 .

[61]  Sonia Leva,et al.  Physical and hybrid methods comparison for the day ahead PV output power forecast , 2017 .

[62]  F. J. Martinez-de-Pison,et al.  The value of day-ahead forecasting for photovoltaics in the Spanish electricity market , 2017 .

[63]  Martin Hofmann,et al.  Influence of Various Irradiance Models and Their Combination on Simulation Results of Photovoltaic Systems , 2017 .

[64]  B. Marion Numerical method for angle-of-incidence correction factors for diffuse radiation incident photovoltaic modules , 2017 .

[65]  Clifford W. Hansen,et al.  Pvlib Python: a Python Package for Modeling Solar Energy Systems , 2018, J. Open Source Softw..

[66]  N. Rahim,et al.  Solar photovoltaic generation forecasting methods: A review , 2018 .

[67]  Carlos F.M. Coimbra,et al.  History and trends in solar irradiance and PV power forecasting: A preliminary assessment and review using text mining , 2018, Solar Energy.

[68]  J. Boland,et al.  Resolution of the cloud enhancement problem for one-minute diffuse radiation prediction , 2018, Renewable Energy.

[69]  I. Santiago,et al.  Modeling of photovoltaic cell temperature losses: A review and a practice case in South Spain , 2018, Renewable and Sustainable Energy Reviews.

[70]  R. Amaro e Silva,et al.  Spatio-temporal PV forecasting sensitivity to modules’ tilt and orientation , 2019 .

[71]  Dazhi Yang,et al.  Standard of reference in operational day-ahead deterministic solar forecasting , 2019, Journal of Renewable and Sustainable Energy.

[72]  Richard Perez,et al.  Can we gauge forecasts using satellite-derived solar irradiance? , 2019, Journal of Renewable and Sustainable Energy.

[73]  John Boland,et al.  Satellite-augmented diffuse solar radiation separation models , 2019, Journal of Renewable and Sustainable Energy.

[74]  Jan Martin Zepter,et al.  Unit commitment under imperfect foresight – The impact of stochastic photovoltaic generation , 2018, Applied Energy.

[75]  E. Lorenz,et al.  Solar and PV forecasting for large PV power plants using numerical weather models, satellite data and ground measurements , 2019, 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC).

[76]  Y. Saint-Drenan,et al.  Data-analysis and modelling of the effect of inter-row shading on the power production of photovoltaic plants , 2019, Solar Energy.

[77]  Dazhi Yang,et al.  A guideline to solar forecasting research practice: Reproducible, operational, probabilistic or physically-based, ensemble, and skill (ROPES) , 2019, Journal of Renewable and Sustainable Energy.

[78]  Erees Queen B. Macabebe,et al.  Photovoltaic System Performance Model for Output Power Forecasting , 2019, 2019 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC).

[79]  Xiaoxia Qi,et al.  A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network , 2019, Applied Energy.

[80]  Jan Kleissl,et al.  Operational solar forecasting for the real-time market , 2019, International Journal of Forecasting.

[81]  Nicholas A. Engerer,et al.  Worldwide performance assessment of 75 global clear-sky irradiance models using Principal Component Analysis , 2019, Renewable and Sustainable Energy Reviews.

[82]  Chang-Yeol Yun,et al.  Probabilistic prediction of direct normal irradiance derived from global horizontal irradiance over the Korean Peninsula by using Monte-Carlo simulation , 2019, Solar Energy.

[83]  Nicholas A. Engerer,et al.  Engerer2: Global re-parameterisation, update, and validation of an irradiance separation model at different temporal resolutions , 2019, Journal of Renewable and Sustainable Energy.

[84]  M. J. Costa,et al.  Prediction of diffuse horizontal irradiance using a new climate zone model , 2019, Renewable and Sustainable Energy Reviews.

[85]  Viorel Badescu,et al.  A current perspective on the accuracy of incoming solar energy forecasting , 2019, Progress in Energy and Combustion Science.

[86]  N. Lindsay,et al.  Errors in PV power modelling due to the lack of spectral and angular details of solar irradiance inputs , 2020, Solar Energy.

[87]  Hadrien Verbois,et al.  Verification of deterministic solar forecasts , 2020, Solar Energy.

[88]  Martin János Mayer,et al.  Environmental and economic multi-objective optimization of a household level hybrid renewable energy system by genetic algorithm , 2020, Applied Energy.

[89]  Martin János Mayer,et al.  Techno-economic optimization of grid-connected, ground-mounted photovoltaic power plants by genetic algorithm based on a comprehensive mathematical model , 2020 .

[90]  V. Sreeram,et al.  A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization , 2020 .

[91]  R. Urraca,et al.  Influence of electricity market structures on deterministic solar forecasting verification , 2020 .

[92]  Hao Quan,et al.  Probabilistic solar irradiance transposition models , 2020 .

[93]  Spyros Theocharides,et al.  Day-ahead photovoltaic power production forecasting methodology based on machine learning and statistical post-processing , 2020 .

[94]  M. J. Mayer,et al.  Ecodesign of ground-mounted photovoltaic power plants: Economic and environmental multi-objective optimization , 2021 .