Multifunctional Cement Composites Strain and Damage Sensors Applied on Reinforced Concrete (RC) Structural Elements

In this research, strain-sensing and damage-sensing functional properties of cement composites have been studied on a conventional reinforced concrete (RC) beam. Carbon nanofiber (CNFCC) and fiber (CFCC) cement composites were used as sensors on a 4 m long RC beam. Different casting conditions (in situ or attached), service location (under tension or compression) and electrical contacts (embedded or superficial) were compared. Both CNFCC and CFCC were suitable as strain sensors in reversible (elastic) sensing condition testing. CNFCC showed higher sensitivities (gage factor up to 191.8), while CFCC only reached gage factors values of 178.9 (tension) or 49.5 (compression). Furthermore, damage-sensing tests were run, increasing the applied load progressively up to the RC beam failure. In these conditions, CNFCC sensors were also strain sensitive, but no damage sensing mechanism was detected for the strain levels achieved during the tests. Hence, these cement composites could act as strain sensors, even for severe damaged structures near to their collapse.

[1]  Salvador Ivorra,et al.  Variables affecting strain sensing function in cementitious composites with carbon fibers , 2011 .

[2]  E. Kwon,et al.  A self-sensing carbon nanotube/cement composite for traffic monitoring , 2009, Nanotechnology.

[3]  Xiaohua Zhao,et al.  Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites , 2007 .

[4]  D. Chung Cement-matrix composites for thermal engineering , 2001 .

[5]  Salvador Ivorra,et al.  Effect of silica fume particle size on mechanical properties of short carbon fiber reinforced concrete , 2010 .

[6]  O. Galao,et al.  Mechanical properties and corrosion of CAC mortars with carbon fibers , 2012 .

[7]  P. Garcés,et al.  Función de apantallamiento de interferencia electromagnética de pastas de cemento con materiales carbonosos y cenizas volantes procesadas , 2010 .

[8]  D. Chung,et al.  Cathodic protection of steel reinforced concrete facilitated by using carbon fiber reinforced mortar or concrete , 1997 .

[9]  M. Climent,et al.  Viabilidad de utilización de una pasta de cemento con nanofibras de carbono como ánodo en la extracción electroquímica de cloruros en hormigón , 2013 .

[10]  I. Martín-Gullón,et al.  Carbon nanofibers enhance the fracture toughness and fatigue performance of a structural epoxy system , 2011 .

[11]  D. Chung Functional properties of cement-matrix composites , 2001 .

[12]  Jerry A. Yamamuro,et al.  Discussion of "Resistance Changes during Compression of Carbon Fiber Cement Composites" , 2003 .

[13]  Eil Kwon,et al.  A carbon nanotube/cement composite with piezoresistive properties , 2009 .

[14]  E. Zornoza,et al.  Influence of the Oxidation Process of Carbon Material on the Mechanical Properties of Cement Mortars , 2011 .

[15]  D.D.L. Chung,et al.  Triple Percolation in Concrete Reinforced with Carbon Fiber , 2010 .

[16]  D. Chung,et al.  Carbon fiber reinforced concrete for smart structures capable of non-destructive flaw detection , 1993 .

[17]  D. Chung,et al.  Multifunctional Cement-Based Materials , 2018 .

[18]  Luca Bertolini,et al.  Effectiveness of a conductive cementitious mortar anode for cathodic protection of steel in concrete , 2004 .

[19]  D.D.L. Chung,et al.  Damage in cement-based materials, studied by electrical resistance measurement , 2003 .

[20]  F. J. Baeza,et al.  Efecto de la adición de nanofibras de carbono en las propiedades mecánicas y de durabilidad de materiales cementantes , 2012 .

[21]  Ó. Malo Matrices cementicias multifuncionales mediante adición de nanofibras de carbono , 2012 .

[22]  Rashid K. Abu Al-Rub,et al.  Carbon Nanotubes and Carbon Nanofibers for Enhancing the Mechanical Properties of Nanocomposite Cementitious Materials , 2011 .

[23]  Florence Sanchez,et al.  Microstructure and macroscopic properties of hybrid carbon nanofiber/silica fume cement composites , 2009 .

[24]  Pedro Garcés,et al.  Effect of carbon fibres on the mechanical properties and corrosion levels of reinforced portland cement mortars , 2005 .

[25]  Sherif Yehia,et al.  Evaluation of Electrically Conductive Concrete Containing Carbon Products for Deicing , 2004 .

[26]  D.D.L. Chung,et al.  CEMENT-MATRIX COMPOSITES FOR SMART STRUCTURES , 2000 .

[27]  Francisca Puertas,et al.  Comportamiento de morteros de escoria activada alcalinamente con adición de fibras de carbón , 2007 .

[28]  D.D.L. Chung,et al.  Concrete as a new strain/stress sensor , 1996 .

[29]  L. Napolitano Materials , 1984, Science.

[30]  D. Chung,et al.  Cement-matrix structural nanocomposites , 2004 .

[31]  Yi-Lung Mo,et al.  Self-sensing of carbon nanofiber concrete columns subjected to reversed cyclic loading , 2011 .

[32]  M. Climent,et al.  Electrochemical extraction of chlorides from reinforced concrete using a conductive cement paste as the anode , 2010 .

[33]  I. De la Varga,et al.  Corrosion of steel reinforcement in structural concrete with carbon material addition , 2007 .

[34]  D. Chung,et al.  Pastes for electromagnetic interference shielding , 2005 .

[35]  Mohamed Saafi,et al.  Wireless and embedded carbon nanotube networks for damage detection in concrete structures , 2009, Nanotechnology.