A survey: hybrid evolutionary algorithms for cluster analysis

Clustering is a popular data analysis and data mining technique. It is the unsupervised classification of patterns into groups. Many algorithms for large data sets have been proposed in the literature using different techniques. However, conventional algorithms have some shortcomings such as slowness of the convergence, sensitive to initial value and preset classed in large scale data set etc. and they still require much investigation to improve performance and efficiency. Over the last decade, clustering with ant-based and swarm-based algorithms are emerging as an alternative to more traditional clustering techniques. Many complex optimization problems still exist, and it is often very difficult to obtain the desired result with one of these algorithms alone. Thus, robust and flexible techniques of optimization are needed to generate good results for clustering data. Some algorithms that imitate certain natural principles, known as evolutionary algorithms have been used in a wide variety of real-world applications. Recently, much research has been proposed using hybrid evolutionary algorithms to solve the clustering problem. This paper provides a survey of hybrid evolutionary algorithms for cluster analysis.

[1]  M. Dorigo,et al.  The Ant Colony Optimization MetaHeuristic 1 , 1999 .

[2]  David B. Fogel,et al.  Evolution-ary Computation 1: Basic Algorithms and Operators , 2000 .

[3]  Erwie Zahara,et al.  A hybridized approach to data clustering , 2008, Expert Syst. Appl..

[4]  Chih-Cheng Hung,et al.  Hybridization of the Ant Colony Optimization with the K-Means Algorithm for Clustering , 2005, SCIA.

[5]  Amit Konar,et al.  Kernel based automatic clustering using modified particle swarm optimization algorithm , 2007, GECCO '07.

[6]  Marco Dorigo,et al.  The ant colony optimization meta-heuristic , 1999 .

[7]  Yunping Chen,et al.  A Hybrid Evolutionary Algorithm by Combination of PSO and GA for Unconstrained and Constrained Optimization Problems , 2007, 2007 IEEE International Conference on Control and Automation.

[8]  Taher Niknam,et al.  An Efficient Hybrid Evolutionary Algorithm for Cluster Analysis , 2008 .

[9]  Celso C. Ribeiro,et al.  Greedy Randomized Adaptive Search Procedures , 2003, Handbook of Metaheuristics.

[10]  Anuraganand Sharma,et al.  Performance comparison of particle swarm optimization with traditional clustering algorithms used in self organizing map , 2009 .

[11]  Jinxin Dong,et al.  A New Algorithm for Clustering Based on Particle Swarm Optimization and K-means , 2009, 2009 International Conference on Artificial Intelligence and Computational Intelligence.

[12]  Mohamed Zaït,et al.  A comparative study of clustering methods , 1997, Future Gener. Comput. Syst..

[13]  Ashish Ghosh,et al.  Aggregation pheromone density based data clustering , 2008, Inf. Sci..

[14]  Daniel Merkle,et al.  A New Multi-objective Particle Swarm Optimization Algorithm Using Clustering Applied to Automated Docking , 2005, Hybrid Metaheuristics.

[15]  Jianzhou Wang,et al.  A Hybrid Evolutionary Algorithm Based on ACO and PSO for Real Estate Early Warning System , 2008, 2008 International Conference on Computer Science and Information Technology.

[16]  Jie Shen,et al.  Novel Hybrid Document Clustering Algorithm Based on Ant Colony and Agglomerate , 2009, 2009 Second International Symposium on Knowledge Acquisition and Modeling.

[17]  B. S. Duran,et al.  Cluster Analysis: A Survey , 1976 .

[18]  Caiming Zhang,et al.  Kernel Function Clustering Based on Ant Colony Algorithm , 2008, 2008 Fourth International Conference on Natural Computation.

[19]  R. J. Kuo,et al.  An application of particle swarm optimization algorithm to clustering analysis , 2011, Soft Comput..

[20]  Mohamed S. Kamel,et al.  An aggregated clustering approach using multi-ant colonies algorithms , 2006, Pattern Recognit..

[21]  Andries Petrus Engelbrecht,et al.  Dynamic clustering using particle swarm optimization with application in image segmentation , 2006, Pattern Analysis and Applications.

[22]  Hongzhou Tan,et al.  A Combinational Clustering Method Based on Artificial Immune System and Support Vector Machine , 2006, KES.

[23]  Chih Chieh Yang,et al.  A Two-stage Clustering Method Combining Ant Colony SOM and K-means , 2008, J. Inf. Sci. Eng..

[24]  Johannes Gehrke,et al.  CACTUS—clustering categorical data using summaries , 1999, KDD '99.

[25]  Jiuhui Pan,et al.  Entropy-based metrics in swarm clustering , 2009 .

[26]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[27]  Chuang Zhang,et al.  Clustering Spatial Data with Obstacles Using Improved Ant Colony Optimization and Hybrid Particle Swarm Optimization , 2008, 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery.

[28]  Luca Maria Gambardella,et al.  Ant Algorithms for Discrete Optimization , 1999, Artificial Life.

[29]  Alfred Ultsch,et al.  Clustering with Swarm Algorithms Compared to Emergent SOM , 2009, WSOM.

[30]  Qiuwen Zhang,et al.  A Hybrid Ant Colony Algorithm for the Grain Distribution Centers Location , 2009, ICIC.

[31]  Liu Shang,et al.  The K-means clustering algorithm based on density and ant colony , 2003, International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003.

[32]  Ya-Lou Huang,et al.  A new ant colony clustering algorithm based on DBSCAN , 2004, Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826).

[33]  Zbigniew Michalewicz,et al.  Evolutionary Computation 2 : Advanced Algorithms and Operators , 2000 .

[34]  Yu-Shu Liu,et al.  HDACC: a heuristic density-based ant colony clustering algorithm , 2004, Proceedings. IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2004. (IAT 2004)..

[35]  Tao Xiong,et al.  A combined SVM and LDA approach for classification , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[36]  Marcelo Luis Errecalde,et al.  Adaptive clustering with artificial ants , 2005 .

[37]  Dilson Lucas Pereira,et al.  Study of different approach to clustering data by using the Particle Swarm Optimization Algorithm , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[38]  Mohamed S. Kamel,et al.  Topic Discovery from Document Using Ant-Based Clustering Combination , 2005, APWeb.

[39]  Chui-Yu Chiu,et al.  Cluster Analysis Based on Artificial Immune System and Ant Algorithm , 2007, Third International Conference on Natural Computation (ICNC 2007).

[40]  Kaoru Hirota,et al.  Hyperbox clustering with Ant Colony Optimization (HACO) method and its application to medical risk profile recognition , 2009, Appl. Soft Comput..

[41]  Ali Maroosi,et al.  Application of honey-bee mating optimization algorithm on clustering , 2007, Appl. Math. Comput..

[42]  Hong Tat Ewe,et al.  A hybrid ant colony optimization approach (hACO) for constructing load-balanced clusters , 2005, 2005 IEEE Congress on Evolutionary Computation.

[43]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[44]  Taher Niknam,et al.  A New Evolutionary Algorithm for Cluster Analysis , 2008 .

[45]  Khaled S. Al-Sultan,et al.  A Tabu search approach to the clustering problem , 1995, Pattern Recognit..

[46]  Nicolas Monmarché,et al.  AntClass: discovery of clusters in numeric data by an hybridization of an ant colony with the Kmeans , 1999 .

[47]  Xiaohui Cui,et al.  Document Clustering Analysis Based on Hybrid PSO+K-means Algorithm , 2005 .

[48]  Alex A. Freitas,et al.  A survey of evolutionary algorithms for data mining and knowledge discovery , 2003 .

[49]  Baldo Faieta,et al.  Diversity and adaptation in populations of clustering ants , 1994 .

[50]  George Karypis,et al.  C HAMELEON : A Hierarchical Clustering Algorithm Using Dynamic Modeling , 1999 .

[51]  Jiawei Han,et al.  CLARANS: A Method for Clustering Objects for Spatial Data Mining , 2002, IEEE Trans. Knowl. Data Eng..

[52]  B. Kulkarni,et al.  An ant colony approach for clustering , 2004 .

[53]  Marco Dorigo,et al.  Ant-based clustering: a comparative study of its relative performance with respect to k-means, average link and 1d-som , 2003 .

[54]  Ching-Yi Chen,et al.  Alternative KPSO-Clustering Algorithm , 2005 .

[55]  Leandro Nunes de Castro,et al.  TermitAnt: An Ant Clustering Algorithm Improved by Ideas from Termite Colonies , 2004, ICONIP.

[56]  Bin Li,et al.  Research on an Ant Colony ISODATA Algorithm for Clustering Analysis in Real Time Computer Simulation , 2007, Second Workshop on Digital Media and its Application in Museum & Heritages (DMAMH 2007).

[57]  Paola Pellegrini,et al.  A Computational Analysis on a Hybrid Approach: Quick-and-dirty ant colony optimization , 2009 .

[58]  Thomas Stützle,et al.  The Ant Colony Optimization Metaheuristic: Algorithms, Applications, and Advances , 2003 .

[59]  Fei Wang,et al.  Fuzzy Document Clustering Based on Ant Colony Algorithm , 2009, ISNN.

[60]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[61]  Taher Niknam,et al.  Application of a New Hybrid Optimization Algorithm on Cluster Analysis , 2008 .

[62]  Jonathan Timmis,et al.  Artificial immune systems - a new computational intelligence paradigm , 2002 .

[63]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[64]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[65]  Leandro N. de Castro,et al.  Data Clustering with Particle Swarms , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[66]  Gao Shang A New Hybrid Ant Colony Algorithm for Clustering Problem , 2008, 2008 International Symposium on Intelligent Information Technology Application Workshops.

[67]  Li Wang,et al.  Particle Swarm Optimization for Fuzzy c-Means Clustering , 2006, 2006 6th World Congress on Intelligent Control and Automation.

[68]  Francisco Herrera,et al.  A GRASP Algorithm for Clustering , 2002, IBERAMIA.

[69]  F. Azuaje Artificial Immune Systems: A New Computational Intelligence Approach , 2003 .

[70]  Nicolas Monmarché,et al.  AntClust: Ant Clustering and Web Usage Mining , 2003, GECCO.

[71]  Lakhmi C. Jain,et al.  Knowledge-Based Intelligent Information and Engineering Systems , 2004, Lecture Notes in Computer Science.

[72]  Xiyu Liu,et al.  A Revised Ant Clustering Algorithm with Obstacle Constraints , 2009, 2009 WRI World Congress on Computer Science and Information Engineering.

[73]  Taher Niknam,et al.  An efficient hybrid evolutionary optimization algorithm based on PSO and SA for clustering , 2009 .

[74]  Li-Yeh Chuang,et al.  Comparative Particle Swarm Optimization (CPSO) for solving optimization problems , 2008, 2008 IEEE International Conference on Research, Innovation and Vision for the Future in Computing and Communication Technologies.

[75]  Sorinel A. Oprisan,et al.  Functional self-organization performing wide-sense stochastic processes , 1996 .

[76]  Thomas E. Potok,et al.  Document clustering using particle swarm optimization , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[77]  I.W. Kao,et al.  An effective particle swarm optimization method for data clustering. , 2007, 2007 IEEE International Conference on Industrial Engineering and Engineering Management.

[78]  Gilles Venturini,et al.  Data and Text Mining with Hierarchical Clustering Ants , 2006, Swarm Intelligence in Data Mining.

[79]  Sandra Paterlini,et al.  Differential evolution and particle swarm optimisation in partitional clustering , 2006, Comput. Stat. Data Anal..

[80]  Andries P. Engelbrecht,et al.  Image Classification using Particle Swarm Optimization , 2002, SEAL.

[81]  Lei Zhang,et al.  A Modified Clustering Algorithm Based on Swarm Intelligence , 2005, ICNC.

[82]  Václav Snásel,et al.  Fuzzy clustering using hybrid fuzzy c-means and fuzzy particle swarm optimization , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[83]  Magdalene Marinaki,et al.  A Hybrid Clustering Algorithm Based on Multi-swarm Constriction PSO and GRASP , 2008, DaWaK.

[84]  Lawrence O. Hall,et al.  Ant Clustering Using Ensembles of Partitions , 2009, MCS.

[85]  Sudipto Guha,et al.  CURE: an efficient clustering algorithm for large databases , 1998, SIGMOD '98.

[86]  Jinxin Dong,et al.  A New Clustering Algorithm Based on PSO with the Jumping Mechanism of SA , 2009, 2009 Third International Symposium on Intelligent Information Technology Application.

[87]  Wenbo Xu,et al.  Quantum-Behaved Particle Swarm Optimization Clustering Algorithm , 2006, ADMA.

[88]  Mohamed Batouche,et al.  An Efficient Ant Algorithm for Swarm-Based Image Clustering , 2007 .

[89]  Magdalene Marinaki,et al.  A Hybrid Particle Swarm Optimization Algorithm for Clustering Analysis , 2007, DaWaK.

[90]  N. Franks,et al.  Brood sorting by ants: distributing the workload over the work-surface , 1992, Behavioral Ecology and Sociobiology.

[91]  Marco Dorigo,et al.  On the Performance of Ant-based Clustering , 2003, HIS.

[92]  Nicolas Monmarché,et al.  On Improving Clustering in Numerical Databases with Artificial Ants , 1999, ECAL.

[93]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[94]  Zhang Zhao-tao A Clustering Algorithm based on Swarm Intelligence , 2005 .

[95]  Mehmet Korürek,et al.  A new arrhythmia clustering technique based on Ant Colony Optimization , 2008, J. Biomed. Informatics.

[96]  Vipin Kumar,et al.  Chameleon: Hierarchical Clustering Using Dynamic Modeling , 1999, Computer.

[97]  Fabio A. González,et al.  A Scalable Artificial Immune System Model for Dynamic Unsupervised Learning , 2003, GECCO.

[98]  Marco Dorigo,et al.  Ant-Based Clustering and Topographic Mapping , 2006, Artificial Life.

[99]  Agostinho C. Rosa,et al.  KohonAnts - A Self-Organizing Ant Algorithm for Clustering and Pattern Classification , 2008, ALIFE.

[100]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[101]  Juan Julián Merelo Guervós,et al.  Self-Organized Stigmergic Document Maps: Environment as a Mechanism for Context Learning , 2004, ArXiv.

[102]  Jean-Louis Deneubourg,et al.  The dynamics of collective sorting robot-like ants and ant-like robots , 1991 .

[103]  R. J. Kuo,et al.  Developing a diagnostic system through the integration of ant colony optimization systems and case-based reasoning , 2006 .

[104]  Gillian Dobbie,et al.  An Evolutionary Particle Swarm Optimization algorithm for data clustering , 2008, 2008 IEEE Swarm Intelligence Symposium.

[105]  S. Ono,et al.  Pheromone-based concept in Ant Clustering , 2008, 2008 3rd International Conference on Intelligent System and Knowledge Engineering.

[106]  Ching-Yi Chen,et al.  Particle swarm optimization algorithm and its application to clustering analysis , 2004, 2012 Proceedings of 17th Conference on Electrical Power Distribution.

[107]  Ling Chen,et al.  A/sup 4/C: an adaptive artificial ants clustering algorithm , 2004, 2004 Symposium on Computational Intelligence in Bioinformatics and Computational Biology.

[108]  Riccardo Poli,et al.  Particle Swarm Optimisation , 2011 .

[109]  Donald E. Brown,et al.  A practical application of simulated annealing to clustering , 1990, Pattern Recognit..

[110]  Yixian Yang,et al.  Towards Improving Ant-Based Clustering - An Chaotic Ant Clustering Algorithm , 2007, 2007 International Conference on Computational Intelligence and Security Workshops (CISW 2007).

[111]  Hui Fu A Novel Clustering Algorithm with Ant Colony Optimization , 2008, 2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application.

[112]  Siu Cheung Hui,et al.  Exploring ant-based algorithms for gene expression data analysis , 2009, Artif. Intell. Medicine.

[113]  Adel M. Alimi,et al.  SwarmClass: A Novel Data Clustering Approach by a Hybridization of an Ant Colony with Flying Insects , 2008, ANTS Conference.

[114]  Chih Chieh Yang,et al.  Integration of Ant Colony SOM and K-Means for Clustering Analysis , 2006, KES.

[115]  R. Suganya,et al.  Data Mining Concepts and Techniques , 2010 .

[116]  Magdalene Marinaki,et al.  A Hybrid Bumble Bees Mating Optimization - GRASP Algorithm for Clustering , 2009, HAIS.

[117]  Mauricio G. C. Resende,et al.  Greedy Randomized Adaptive Search Procedures , 1995, J. Glob. Optim..

[118]  Leandro Nunes de Castro,et al.  Towards Improving Clustering Ants: An Adaptive Ant Clustering Algorithm , 2005, Informatica.

[119]  Urszula Boryczka,et al.  Ant Clustering Algorithm , 2008 .

[120]  Cheng-Fa Tsai,et al.  ACODF: a novel data clustering approach for data mining in large databases , 2004 .

[121]  Gilles Venturini,et al.  AntTree: a new model for clustering with artificial ants , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[122]  Andries Petrus Engelbrecht,et al.  Data clustering using particle swarm optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[123]  Riccardo Poli,et al.  New ideas in optimization , 1999 .

[124]  Zhao Weili,et al.  An Improved Entropy-Based Ant Clustering Algorithm , 2009, 2009 WASE International Conference on Information Engineering.

[125]  José Muñoz,et al.  A Hybrid Algorithm for Solving Clustering Problems , 2008, Innovations in Hybrid Intelligent Systems.

[126]  Tieli Sun,et al.  An efficient hybrid data clustering method based on K-harmonic means and Particle Swarm Optimization , 2009, Expert Syst. Appl..

[127]  R. J. Kuo,et al.  Developing a diagnostic system through integration of fuzzy case-based reasoning and fuzzy ant colony system , 2005, Expert Syst. Appl..

[128]  Thomas Stützle,et al.  Ant Colony Optimization Theory , 2004 .

[129]  Pavel Berkhin,et al.  A Survey of Clustering Data Mining Techniques , 2006, Grouping Multidimensional Data.

[130]  Yi Hong,et al.  A hybrid algorithm based on particle swarm optimization and simulated annealing to holon task allocation for holonic manufacturing system , 2007 .

[131]  Werasak Kurutach,et al.  Combination Artificial Ant Clustering and K-PSO Clustering Approach to Network Security Model , 2006, 2006 International Conference on Hybrid Information Technology.

[132]  Hui Liu,et al.  An Ant-Based Fast Text Clustering Approach Using Pheromone , 2008, 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery.

[133]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[134]  Amit Konar,et al.  Automatic kernel clustering with a Multi-Elitist Particle Swarm Optimization Algorithm , 2008, Pattern Recognit. Lett..

[135]  Z. Sadeghi,et al.  Ant colony clustering by expert ants , 2008, 2008 11th International Conference on Computer and Information Technology.

[136]  T Watson Layne,et al.  A Genetic Algorithm Approach to Cluster Analysis , 1998 .

[137]  Majid Ahmadi,et al.  An adaptive ant-based clustering algorithm with improved environment perception , 2009, 2009 IEEE International Conference on Systems, Man and Cybernetics.

[138]  Xiyu Liu,et al.  A Quick Ant Clustering Algorithm , 2007, Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007).

[139]  Yuan-Sheng Huang,et al.  Short-Term Load Forecasting Based on Ant Colony Fuzzy Clustering and SVM Algorithm , 2008, 2008 Fourth International Conference on Natural Computation.

[140]  Thomas A. Runkler,et al.  Fuzzy Clustering by Particle Swarm Optimization , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[141]  F. Glover,et al.  Handbook of Metaheuristics , 2019, International Series in Operations Research & Management Science.

[142]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[143]  Mouloud Koudil,et al.  AntPart: an algorithm for the unsupervised classification problem using ants , 2006, Appl. Math. Comput..

[144]  Xiyu Liu,et al.  Application of K-means Algorithm Based on Ant Clustering Algorithm in Macroscopic Planning of Highway Transportation Hub , 2007, 2007 First IEEE International Symposium on Information Technologies and Applications in Education.

[145]  Peng Xiao,et al.  A Mountain Clustering Based on Improved PSO Algorithm , 2006 .

[146]  Kevin Cheng,et al.  An ACO-Based Clustering Algorithm , 2006, ANTS Workshop.

[147]  Ali Maroosi,et al.  A new clustering algorithm based on hybrid global optimizationbased on a dynamical systems approach algorithm , 2010, Expert Syst. Appl..

[148]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[149]  Siti Zaiton Mohd Hashim,et al.  A Hybrid Intelligent Approach for Automated Alert Clustering and Filtering in Intrusion Alert Analysis , 2009 .

[150]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[151]  Yucheng Kao,et al.  Combining K-means and particle swarm optimization for dynamic data clustering problems , 2009, 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems.

[152]  Zhang Tao,et al.  An Improved Clustering Algorithm Based on Ant Colony Approach , 2007, 2007 International Conference on Computational Intelligence and Security Workshops (CISW 2007).

[153]  Zülal Güngör,et al.  K-harmonic means data clustering with simulated annealing heuristic , 2007, Appl. Math. Comput..

[154]  Tian Zhang,et al.  BIRCH: an efficient data clustering method for very large databases , 1996, SIGMOD '96.

[155]  Hilarie K. Orman,et al.  Activating Networks: A Progress Report , 1999, Computer.

[156]  Parag M. Kanade,et al.  Fuzzy ants as a clustering concept , 2003, 22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003.