Acuity of compound eyes: Physical limitations and design

SummaryThe two fundamental limitations to resolving power of compound eyes are the wave (diffraction) and particle (photon noise) nature of light. By appreciating their interrelationship we gain insight into the design and limitation of eyes. In particular, we determine the dependence of eye design on the environmental light intensity.1.The limitations to resolving power include: the intensity of light, angular motion, receptor grain, lens-pupil blur, finite diameter of rhabdom, and neural convergence.2.Only those animals that are active in bright sunlight and normally have low angular velocity, profit by having some region of their eyes near the diffraction limit, i.e.DΔφ ≅ 0.58λ, whereD is the facet diameter,Δφ the interommatidial angle and λ the wavelength in vacuum. If these conditions are not fulfilled, it is better to have a largerDΔφ.3.The effect of an animal undergoing angular velocityu is equivalent to a reduction in light intensity by the amount exp−1.78(φtΔφ)2, where φt is the amount the animal turns in one integration time. Taking this into account, we present a possible explanation forMusca havingDΔφ about 4.5 times greater than the diffraction limit.4.Various strategies for dark-adaptation are considered with the conclusion that neural pooling combined with a widening of the acceptance angle is most effective for coping with reduced intensities.

[1]  J. Goodman Introduction to Fourier optics , 1969 .

[2]  London,et al.  Light, Colour and Vision , 1969 .

[3]  Karl Georg Götz,et al.  Die optischen Übertragungseigenschaften der Komplexaugen von Drosophila , 1965, Kybernetik.

[4]  Kuno Kirschfeld,et al.  The Absolute Sensitivity of Lens and Compound Eyes , 1974, Zeitschrift fur Naturforschung. Section C, Biosciences.

[5]  H. D. de Vries,et al.  Physical aspects of the sense organs. , 1956, Progress in biophysics and biophysical chemistry.

[6]  A. Rose,et al.  Vision: human and electronic , 1973 .

[7]  T. Collett,et al.  Chasing behaviour of houseflies (Fannia canicularis) , 1974, Journal of comparative physiology.

[8]  Jesus del Poetillo Beziehungen zwischen den Öffnungswinkeln der Ommatidien, Krümmung und Gestalt der Insektenaugen und ihrer funktionellen Aufgabe , 1936 .

[9]  G. A. Horridge,et al.  Electrophysiological investigation of the optics of the locust retina , 1967, Zeitschrift für vergleichende Physiologie.

[10]  Giulio Fermi,et al.  Optomotorische Reaktionen der Fliege Musca Domestica , 1963, Kybernetik.

[11]  Simon B. Laughlin,et al.  Receptor Function in the Apposition Eye — An Electrophysiological Approach , 1975 .

[12]  A. Snyder Physics of Vision in Compound Eyes , 1979 .

[13]  A. Mallock Divided Composite Eyes , 1922, Nature.

[14]  G. Horridge Optical mechanisms of clear-zone eyes , 1974 .

[15]  Allan W. Snyder,et al.  Spatial information capacity of compound eyes , 2004, Journal of comparative physiology.

[16]  R. Fox,et al.  Falcon visual acuity. , 1976, Science.

[17]  Kuno Kirschfeld,et al.  The Dorsal Compound Eye of Simuliid Flies: , 1976 .

[18]  H. Devries Physical aspects of the sense organs. , 1956 .

[19]  R. Bracewell The Fourier Transform and Its Applications , 1966 .

[20]  G. A. Mazokhin-Porshniakov,et al.  Insect Vision , 1969 .

[21]  K. Kirschfeld,et al.  Optische Eigenschaften der Ommatidien im Komplexauge von Musca , 1968, Kybernetik.

[22]  Doekele G. Stavenga,et al.  A.6 Optical Qualities of the Fly Eye — An Approach from the Side of Geometrical, Physical and Waveguide Optics , 1975 .

[23]  H. Barlow The Size of Ommatidia in Apposition Eyes , 1952 .

[24]  T. Collett,et al.  Visual control of flight behaviour in the hoverflySyritta pipiens L. , 1975, Journal of comparative physiology.

[25]  Karl Geokg Götz,et al.  Optomotorische Untersuchung des visuellen systems einiger Augenmutanten der Fruchtfliege Drosophila , 1964, Kybernetik.

[26]  Kuno Kirschfeld,et al.  The Resolution of Lens and Compound Eyes , 1976 .

[27]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[28]  T E Sherk,et al.  Development of the compound eyes of dragonflies (Odonata). III. Adult compound eyes. , 1977, The Journal of experimental zoology.

[29]  A. Mallock I. Insect sight and the defining power of composite eyes , 1894, Proceedings of the Royal Society of London.

[30]  Allan W. Snyder,et al.  Information capacity of eyes , 1977, Vision Research.

[31]  David Middleton,et al.  Sampling and Reconstruction of Wave-Number-Limited Functions in N-Dimensional Euclidean Spaces , 1962, Inf. Control..

[32]  Gary D. Bernard,et al.  The effect of motion on visual acuity of the compound eye: A theoretical analysis , 1975, Vision Research.