Synchronization of musical words

We study the synchronization of musical sequences by means of an operation defined on finite or infinite words called superimposition. This operation can formalize basic musical structures such as melodic canons and serial counterpoint. In the case of circular canons, we introduce the superimposition of infinite words, and we present an enumeration algorithm involving Lyndon words, which appear to be a useful tool for enumerating periodic musical structures. We also define the superimposition of finite words, the superimposition of languages, and the iterated superimposition of a language, which is applied to the study of basic aspects of serial music. This leads to the study of closure properties of rational languages of finite words under superimposition and iterated superimposition. The rationality of the transduction associated with the superimposition appears to be a powerful argument in the proof of these properties. Since the superimposition of finite words is the max operation of a sup-semilattice, the last section addresses the link between the rationality of a sup-semilattice operation and the rationality of the order relation associated with it.

[1]  Shlomo Dubnov,et al.  Guessing the Composer's Mind: Applying Universal Prediction to Musical Style , 1999, ICMC.

[2]  Béatrice Bérard,et al.  Literal Shuffle , 1987, Theor. Comput. Sci..

[3]  M. Chemillier Monoïde libre et musique. II , 1987 .

[4]  Marc Chemillier,et al.  Toward a Theory of Formal Musical Languages , 1988, ICMC.

[5]  J. van Leeuwen,et al.  Theoretical Computer Science , 2003, Lecture Notes in Computer Science.

[6]  Charlotte Truchet,et al.  Computation of words satisfying the "rhythmic oddity property" (after Simha Arom's works) , 2003, Inf. Process. Lett..

[7]  Marc Chemillier,et al.  Ethnomusicology, Ethnomathematics. The Logic Underlying Orally Transmitted Artistic Practices , 2002 .

[8]  Jean-Pierre Duval,et al.  Generation of a section of conjugation classes and Lyndon word tree of limited length , 1988 .

[9]  M. Lothaire Combinatorics on words: Bibliography , 1997 .

[10]  J. Howard Johnson Rational Equivalence Relations , 1986, ICALP.

[11]  B APPEL,et al.  L E. , 1963, Skin.

[12]  Marc Chemillier Monoïde Libre Et Musique: Deuxième Partie , 1987, RAIRO Theor. Informatics Appl..

[13]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[14]  François Pachet,et al.  The Continuator: Musical Interaction With Style , 2003, ICMC.

[15]  Mark Steedman,et al.  A Generative Grammar for Jazz Chord Sequences , 1984 .

[16]  Berndt Farwer,et al.  ω-automata , 2002 .

[17]  Daniel Koglin Book Review: Die kombinatorisch strukturierten Harfen- und Xylophonpattern der Nzakara (Zentralafrikanische Republik) als klingende Geometrie: Eine Alternative zu Marc Chemilliers Kanonhypothese , 2005 .

[18]  Marc Chemillier Monoïde Libre Et Musique Première Partie: Les Musiciens Ont-Ils Besoin Des Mathématiques? , 1987, RAIRO Theor. Informatics Appl..

[19]  Giancarlo Mauri,et al.  A mathematical model for analysing and structuring musical texts , 1978 .

[20]  Charlotte Truchet,et al.  Two Musical CSPs , 2001 .

[21]  F. Pachet,et al.  Surprising Harmonies , 1999 .

[22]  Tero Harju,et al.  On Quasi Orders of Words and the Confluence Property , 1998, Theor. Comput. Sci..

[23]  C. Roads,et al.  Grammars as Representations for Music , 1979 .

[24]  Brigitte Van Wymeersch Musique et mathématiques , 2005 .

[25]  Maurice Nivat,et al.  Transduction des langages de Chomsky , 1968 .

[26]  Rajeev Raman,et al.  String-Matching techniques for musical similarity and melodic recognition , 1998 .

[27]  Jean Berstel,et al.  Transductions and context-free languages , 1979, Teubner Studienbücher : Informatik.

[28]  J. Howard Johnson,et al.  Do Rational Equivalence Relations have Regular Cross-Sections? , 1985, ICALP.