Nonsmooth optimization reformulations of player convex generalized Nash equilibrium problems

Using a regularized Nikaido-Isoda function, we present a (nonsmooth) constrained optimization reformulation of the player convex generalized Nash equilibrium problem (GNEP). Further we give an unconstrained reformulation of a large subclass of player convex GNEPs which, in particular, includes the jointly convex GNEPs. Both approaches characterize all solutions of a GNEP as minima of optimization problems. The smoothness properties of these optimization problems are discussed in detail, and it is shown that the corresponding objective functions are continuous and piecewise continuously differentiable under mild assumptions. Some numerical results based on the unconstrained optimization reformulation being applied to player convex GNEPs are also included.

[1]  M. Roma,et al.  Large-Scale Nonlinear Optimization , 2006 .

[2]  Adrian S. Lewis,et al.  A Robust Gradient Sampling Algorithm for Nonsmooth, Nonconvex Optimization , 2005, SIAM J. Optim..

[3]  Stefano Leonardi,et al.  Game-theoretic analysis of Internet switching with selfish users , 2005, Theor. Comput. Sci..

[4]  Francisco Facchinei,et al.  Exact penalty functions for generalized Nash problems , 2006 .

[5]  Francisco Facchinei,et al.  Generalized Nash equilibrium problems and Newton methods , 2008, Math. Program..

[6]  J. Szép,et al.  Introduction to the theory of games , 1985 .

[7]  Stephan Dempe,et al.  Directional derivatives of the solution of a parametric nonlinear program , 1995, Math. Program..

[8]  R. W. Chaney Piecewise functions in nonsmooth analysis , 1990 .

[9]  W. Hogan Point-to-Set Maps in Mathematical Programming , 1973 .

[10]  Masao Fukushima,et al.  Newton’s method for computing a normalized equilibrium in the generalized Nash game through fixed point formulation , 2012, Math. Program..

[11]  Masao Fukushima,et al.  Parametrized variational inequality approaches to generalized Nash equilibrium problems with shared constraints , 2011, Comput. Optim. Appl..

[12]  Francisco Facchinei,et al.  Nash equilibria: the variational approach , 2010, Convex Optimization in Signal Processing and Communications.

[13]  Christian Kanzow,et al.  Nonsmooth optimization reformulations characterizing all solutions of jointly convex generalized Nash equilibrium problems , 2011, Comput. Optim. Appl..

[14]  Christian Kanzow,et al.  Optimization reformulations of the generalized Nash equilibrium problem using Nikaido-Isoda-type functions , 2009, Comput. Optim. Appl..

[15]  P. Pardalos,et al.  Pareto optimality, game theory and equilibria , 2008 .

[16]  Gül Gürkan,et al.  Approximations of Nash equilibria , 2008, Math. Program..

[17]  Francisco Facchinei,et al.  On the computation of all solutions of jointly convex generalized Nash equilibrium problems , 2011, Optim. Lett..

[18]  Masao Fukushima,et al.  Restricted generalized Nash equilibria and controlled penalty algorithm , 2011, Comput. Manag. Sci..

[19]  Hans Peters,et al.  Game Theory: A Multi-Leveled Approach , 2008 .

[20]  Anna Nagurney Oligopolistic Market Equilibrium , 1993 .

[21]  Jong-Shi Pang,et al.  Piecewise Smoothness, Local Invertibility, and Parametric Analysis of Normal Maps , 1996, Math. Oper. Res..

[22]  Francisco Facchinei,et al.  Penalty Methods for the Solution of Generalized Nash Equilibrium Problems , 2010, SIAM J. Optim..

[23]  Francisco Facchinei,et al.  Generalized Nash Equilibrium Problems , 2010, Ann. Oper. Res..

[24]  Ferenc Szidarovszky,et al.  Introduction to the Theory of Games: Concepts, Methods, Applications , 2010 .

[25]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[26]  E. Damme Stability and perfection of Nash equilibria , 1987 .

[27]  R. Janin Directional derivative of the marginal function in nonlinear programming , 1984 .

[28]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[29]  Roger B. Myerson,et al.  Game theory - Analysis of Conflict , 1991 .

[30]  Eleftherios Couzoudis,et al.  Computing generalized Nash equilibria by polynomial programming , 2013, Math. Methods Oper. Res..

[31]  Masao Fukushima,et al.  Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games , 2009, Comput. Manag. Sci..

[32]  Yonina C. Eldar,et al.  Convex Optimization in Signal Processing and Communications , 2009 .