Assessment of rates of structural change in glaucoma using imaging technologies

PurposeTo review the ability of current imaging technologies to provide estimates of rates of structural change in glaucoma patients.Patients and methodsReview of literature.ResultsImaging technologies, such as confocal scanning laser ophthalmoscopy (CSLO), scanning laser polarimetry (SLP), and optical coherence tomography (OCT), provide quantifiable and reproducible measurements of the optic disc and parapapillary retinal nerve fibre layer (RNFL). Rates of change as quantified by the rim area (RA) (for CSLO) and RNFL thickness (for SLP and OCT) are related to glaucoma progression as detected by conventional methods (eg, visual fields and optic disc photography). Evidence shows that rates of RNFL and RA loss are significantly faster in progressing compared with non-progressing glaucoma patients.ConclusionMeasurements of rates of optic disc and RNFL change are becoming increasingly precise and individualized. Currently available imaging technologies have the ability to detect and quantify progression in glaucoma, and their measurements may be suitable end points in glaucoma clinical trials.

[1]  Shu Liu,et al.  Evaluation of retinal nerve fiber layer progression in glaucoma: a study on optical coherence tomography guided progression analysis. , 2010, Investigative ophthalmology & visual science.

[2]  E. E. Hartmann,et al.  The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. , 2002, Archives of ophthalmology.

[3]  J. Duker,et al.  Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. , 2005, Ophthalmology.

[4]  Drance Sm The Collaborative Normal-Tension Glaucoma Study and some of its lessons. , 1999 .

[5]  Christopher A Girkin,et al.  Effect of glaucomatous damage on repeatability of confocal scanning laser ophthalmoscope, scanning laser polarimetry, and optical coherence tomography. , 2007, Investigative ophthalmology & visual science.

[6]  Valter Torri,et al.  Results of the European Glaucoma Prevention Study. , 2005, Ophthalmology.

[7]  Jost B Jonas,et al.  Optic disc progression in glaucoma: comparison of confocal scanning laser tomography to optic disc photographs in a prospective study. , 2009, Investigative ophthalmology & visual science.

[8]  Hiroshi Ishikawa,et al.  Comparison of three optical coherence tomography scanning areas for detection of glaucomatous damage. , 2005, American journal of ophthalmology.

[9]  J. Jonas,et al.  Pattern of glaucomatous neuroretinal rim loss. , 1993, Ophthalmology.

[10]  Chris A Johnson,et al.  Glaucomatous progression in series of stereoscopic photographs and Heidelberg retina tomograph images. , 2010, Archives of ophthalmology.

[11]  Nicholas G Strouthidis,et al.  Analysis of HRT images: comparison of reference planes. , 2008, Investigative ophthalmology & visual science.

[12]  B C Chauhan,et al.  Technique for detecting serial topographic changes in the optic disc and peripapillary retina using scanning laser tomography. , 2000, Investigative ophthalmology & visual science.

[13]  David P Crabb,et al.  A new statistical approach for quantifying change in series of retinal and optic nerve head topography images. , 2005, Investigative ophthalmology & visual science.

[14]  F. Medeiros,et al.  Detection of glaucoma progression with stratus OCT retinal nerve fiber layer, optic nerve head, and macular thickness measurements. , 2009, Investigative ophthalmology & visual science.

[15]  N. Congdon,et al.  Methodological variations in estimating apparent progressive visual field loss in clinical trials of glaucoma treatment , 2000 .

[16]  F. Medeiros,et al.  Reproducibility of RTVue retinal nerve fiber layer thickness and optic disc measurements and agreement with Stratus optical coherence tomography measurements. , 2009, American journal of ophthalmology.

[17]  D. Garway-Heath,et al.  The spatial pattern of neuroretinal rim loss in ocular hypertension. , 2009, Investigative ophthalmology & visual science.

[18]  R. Harwerth,et al.  Linking structure and function in glaucoma , 2010, Progress in Retinal and Eye Research.

[19]  Nicholas G Strouthidis,et al.  Monitoring glaucomatous progression using a novel Heidelberg Retina Tomograph event analysis. , 2007, Ophthalmology.

[20]  A. Sommer,et al.  Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. , 1991, Archives of ophthalmology.

[21]  L. Zangwill,et al.  Detection of glaucoma with scanning laser polarimetry. , 1998, Archives of ophthalmology.

[22]  Robert N Weinreb,et al.  Retinal nerve fiber layer thickness measurements with scanning laser polarimetry predict glaucomatous visual field loss. , 2004, American journal of ophthalmology.

[23]  R N Weinreb,et al.  Reproducibility of topographic measurements of the normal and glaucomatous optic nerve head with the laser tomographic scanner. , 1991, American journal of ophthalmology.

[24]  F. Medeiros,et al.  The Relationship between intraocular pressure and progressive retinal nerve fiber layer loss in glaucoma. , 2009, Ophthalmology.

[25]  Robert N Weinreb,et al.  Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis. , 2010, Ophthalmology.

[26]  L. Zangwill,et al.  Optic disk topography after medical treatment to reduce intraocular pressure. , 2000, American journal of ophthalmology.

[27]  D. Grewal,et al.  Detecting glaucomatous progression using GDx with variable and enhanced corneal compensation using Guided Progression Analysis , 2010, British Journal of Ophthalmology.

[28]  Roger A Hitchings,et al.  Optimizing and validating an approach for identifying glaucomatous change in optic nerve topography. , 2004, Investigative ophthalmology & visual science.

[29]  M. Kass,et al.  Predicting the onset of glaucoma: the confocal scanning laser ophthalmoscopy ancillary study to theOcular Hypertension Treatment Study. , 2010, Ophthalmology.

[30]  F. Medeiros,et al.  Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. , 2005, American journal of ophthalmology.

[31]  Robert N Weinreb,et al.  Detection of progressive retinal nerve fiber layer loss in glaucoma using scanning laser polarimetry with variable corneal compensation. , 2009, Investigative ophthalmology & visual science.

[32]  G. Holló,et al.  Enhanced corneal compensation for scanning laser polarimetry on eyes with atypical polarisation pattern , 2005, British Journal of Ophthalmology.

[33]  B C Chauhan,et al.  Optic disc and visual field changes in a prospective longitudinal study of patients with glaucoma: comparison of scanning laser tomography with conventional perimetry and optic disc photography. , 2001, Archives of ophthalmology.

[34]  Robert N Weinreb,et al.  Comparison of HRT-3 glaucoma probability score and subjective stereophotograph assessment for prediction of progression in glaucoma. , 2008, Investigative ophthalmology & visual science.

[35]  M. Nicolela,et al.  Visual field and optic disc progression in patients with different types of optic disc damage: a longitudinal prospective study. , 2003, Ophthalmology.

[36]  C. Cheung,et al.  Relationship between retinal nerve fiber layer measurement and signal strength in optical coherence tomography. , 2008, Ophthalmology.

[37]  Robert N Weinreb,et al.  The confocal scanning laser ophthalmoscopy ancillary study to the ocular hypertension treatment study: study design and baseline factors. , 2004, American journal of ophthalmology.

[38]  Roger A Hitchings,et al.  Approach for identifying glaucomatous optic nerve progression by scanning laser tomography. , 2003, Investigative ophthalmology & visual science.

[39]  F. Medeiros,et al.  Agreement for detecting glaucoma progression with the GDx guided progression analysis, automated perimetry, and optic disc photography. , 2010, Ophthalmology.

[40]  J. Tan,et al.  Variability across the optic nerve head in scanning laser tomography , 2003, The British journal of ophthalmology.

[41]  G. Ravalico,et al.  The effect of ageing on retinal nerve fibre layer thickness: an evaluation by scanning laser polarimetry with variable corneal compensation. , 2006, Acta ophthalmologica Scandinavica.

[42]  F. Medeiros,et al.  Prediction of functional loss in glaucoma from progressive optic disc damage. , 2009, Archives of ophthalmology.

[43]  J. Beiser,et al.  Baseline topographic optic disc measurements are associated with the development of primary open-angle glaucoma: the Confocal Scanning Laser Ophthalmoscopy Ancillary Study to the Ocular Hypertension Treatment Study. , 2005, Archives of ophthalmology.

[44]  F. Medeiros,et al.  Rates of progressive retinal nerve fiber layer loss in glaucoma measured by scanning laser polarimetry. , 2010, American journal of ophthalmology.

[45]  G. Wollstein,et al.  Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. , 2005, Archives of ophthalmology.

[46]  Robert N Weinreb,et al.  Comparison of scanning laser polarimetry using variable corneal compensation and retinal nerve fiber layer photography for detection of glaucoma. , 2004, Archives of ophthalmology.

[47]  Robert N Weinreb,et al.  The glaucoma research community and FDA look to the future: a report from the NEI/FDA CDER Glaucoma Clinical Trial Design and Endpoints Symposium. , 2009, Investigative ophthalmology & visual science.

[48]  L. Zangwill,et al.  Detecting early glaucoma by assessment of retinal nerve fiber layer thickness and visual function. , 2001, Investigative ophthalmology & visual science.

[49]  Robert N Weinreb,et al.  Effect of Improper Scan Alignment on Retinal Nerve Fiber Layer Thickness Measurements Using Stratus Optical Coherence Tomograph , 2008, Journal of glaucoma.

[50]  Robert N Weinreb,et al.  Performance of confocal scanning laser tomograph Topographic Change Analysis (TCA) for assessing glaucomatous progression. , 2009, Investigative ophthalmology & visual science.

[51]  Nicholas G Strouthidis,et al.  Optic disc and visual field progression in ocular hypertensive subjects: detection rates, specificity, and agreement. , 2006, Investigative ophthalmology & visual science.

[52]  Nicholas G Strouthidis,et al.  The Heidelberg retina tomograph Glaucoma Probability Score: reproducibility and measurement of progression. , 2010, Ophthalmology.

[53]  D. A. Johnson Who Should Be Treated , 1991 .

[54]  A. Coleman,et al.  Longitudinal changes in optic disc topography of adult patients after trabeculectomy. , 1999, Ophthalmology.

[55]  Robert N Weinreb,et al.  A comparison of rates of change in neuroretinal rim area and retinal nerve fiber layer thickness in progressive glaucoma. , 2010, Investigative ophthalmology & visual science.

[56]  R. O. Schultz,et al.  Accuracy of scanning laser polarimetry in the diagnosis of glaucoma. , 1999, Archives of ophthalmology.

[57]  D. Garway-Heath,et al.  Factors affecting the test-retest variability of Heidelberg retina tomograph and Heidelberg retina tomograph II measurements , 2005, British Journal of Ophthalmology.

[58]  T. Zeyen,et al.  The sensitivity and specificity of TOP, FDP and GDX in screening for early glaucoma. , 2000, Bulletin de la Societe belge d'ophtalmologie.

[59]  H. Iijima,et al.  A New Parameter for Assessing the Thickness of the Retinal Nerve Fiber Layer for Glaucoma Diagnosis , 1999, European journal of ophthalmology.

[60]  Xiang-Run Huang,et al.  Microtubule contribution to the reflectance of the retinal nerve fiber layer. , 2006, Investigative ophthalmology & visual science.

[61]  F. Medeiros,et al.  Comparison of the GDx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and stratus OCT optical coherence tomograph for the detection of glaucoma. , 2004, Archives of ophthalmology.

[62]  Robert N Weinreb,et al.  Role of optic nerve imaging in glaucoma clinical practice and clinical trials. , 2008, American journal of ophthalmology.

[63]  M. Nicolela,et al.  Rates of neuroretinal rim and peripapillary atrophy area change: a comparative study of glaucoma patients and normal controls. , 2009, Ophthalmology.

[64]  J GarcíaSánchez,et al.  Medical Treatment of Glaucoma , 2010 .

[65]  F. Medeiros,et al.  Detection of glaucoma using scanning laser polarimetry with enhanced corneal compensation. , 2007, Investigative ophthalmology & visual science.

[66]  F. Medeiros,et al.  The effect of atypical birefringence patterns on glaucoma detection using scanning laser polarimetry with variable corneal compensation. , 2007, Investigative ophthalmology & visual science.

[67]  F. Medeiros,et al.  Visual field progression. , 2010, Ophthalmology.

[68]  H. Lemij,et al.  The sensitivity and specificity of nerve fiber layer measurements in glaucoma as determined with scanning laser polarimetry. , 1997, American journal of ophthalmology.

[69]  D. Grewal,et al.  Comparing rates of retinal nerve fibre layer loss with GDxECC using different methods of visual-field progression , 2010, British Journal of Ophthalmology.

[70]  M. Nicolela,et al.  Incidence and rates of visual field progression after longitudinally measured optic disc change in glaucoma. , 2009, Ophthalmology.

[71]  Robert N Weinreb,et al.  Impact of atypical retardation patterns on detection of glaucoma progression using the GDx with variable corneal compensation. , 2009, American journal of ophthalmology.