The Tail of the Stationary Distribution of an Autoregressive Process with Arch(1) Errors

where � enn∈ are i.i.d. random variables. Under general and tractable assumptions we show the existence and uniqueness of a stationary dis- tribution. We prove that the stationary distribution has a Pareto-like tail with a well-specified tail index which depends on α� λ and the distribution of the innovations � enn∈. This paper generalizes results for the ARCH(1) process (the case α = 0). The generalization requires a new method of proof and we invoke a Tauberian theorem.

[1]  G. Alsmeyer On the Harris Recurrence of Iterated Random Lipschitz Functions and Related Convergence Rate Results , 2003 .

[2]  J. Corcoran Modelling Extremal Events for Insurance and Finance , 2002 .

[3]  Asymptotic behaviour of the sample autocovariance and autocorrelation function of the AR(1) process with ARCH(1) errors , 2001 .

[4]  M. Borkovec Extremal behavior of the autoregressive process with ARCH(1) errors , 2000 .

[5]  Nikolaus Kiefersbeck Stationarität und Tailindex bei zeitdiskreten Volatilitätsmodellen , 1999 .

[6]  C. Chatfield Continuous Univariate Distributions, Vol. 1 , 1995 .

[7]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[8]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[9]  R. Chou,et al.  ARCH modeling in finance: A review of the theory and empirical evidence , 1992 .

[10]  C. Goldie IMPLICIT RENEWAL THEORY AND TAILS OF SOLUTIONS OF RANDOM EQUATIONS , 1991 .

[11]  H. Tong Non-linear time series. A dynamical system approach , 1990 .

[12]  Sidney I. Resnick,et al.  Extremal behaviour of solutions to a stochastic difference equation with applications to arch processes , 1989 .

[13]  Sلأren Asmussen,et al.  Applied Probability and Queues , 1989 .

[14]  Upendra Dave,et al.  Applied Probability and Queues , 1987 .

[15]  Stephen L Taylor,et al.  Modelling Financial Time Series , 1987 .

[16]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[17]  M. B. Priestley,et al.  The Development and Construction of General Nonlinear Models in Time Series Analysis , 1985 .

[18]  Paul D. Feigin,et al.  RANDOM COEFFICIENT AUTOREGRESSIVE PROCESSES:A MARKOV CHAIN ANALYSIS OF STATIONARITY AND FINITENESS OF MOMENTS , 1985 .

[19]  A. A. Weiss ARMA MODELS WITH ARCH ERRORS , 1984 .

[20]  R. Tweedie The existence of moments for stationary Markov chains , 1983, Journal of Applied Probability.

[21]  R. L. Tweedie,et al.  Probability, Statistics and Analysis: Criteria for rates of convergence of Markov chains, with application to queueing and storage theory , 1983 .

[22]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[23]  J. Geluk Π-regular variation , 1981 .

[24]  P. Billingsley,et al.  Probability and Measure , 1980 .

[25]  W. Vervaat On a stochastic difference equation and a representation of non–negative infinitely divisible random variables , 1979, Advances in Applied Probability.

[26]  R. Tweedie Criteria for classifying general Markov chains , 1976, Advances in Applied Probability.

[27]  H. Kesten Random difference equations and Renewal theory for products of random matrices , 1973 .

[28]  E. Fama The Behavior of Stock-Market Prices , 1965 .

[29]  B. Mandlebrot The Variation of Certain Speculative Prices , 1963 .