Monoaminergic Orchestration of Motor Programs in a Complex C. elegans Behavior

A single monoamine can orchestrate different phases of a compound motor sequence in C. elegans through the synaptic and extra-synaptic activation of distinct classes of receptors.

[1]  Cori Bargmann Beyond the connectome: How neuromodulators shape neural circuits , 2012, BioEssays : news and reviews in molecular, cellular and developmental biology.

[2]  Jennifer K Pirri,et al.  The neuroethology of C. elegans escape , 2012, Current Opinion in Neurobiology.

[3]  William S. Ryu,et al.  An Imbalancing Act: Gap Junctions Reduce the Backward Motor Circuit Activity to Bias C. elegans for Forward Locomotion , 2011, Neuron.

[4]  S. Lockery The computational worm: spatial orientation and its neuronal basis in C. elegans , 2011, Current Opinion in Neurobiology.

[5]  R. Harris-Warrick Neuromodulation and flexibility in Central Pattern Generator networks , 2011, Current Opinion in Neurobiology.

[6]  Jennifer K Pirri,et al.  The C. elegans Touch Response Facilitates Escape from Predacious Fungi , 2011, Current Biology.

[7]  Leonid Kruglyak,et al.  Catecholamine receptor polymorphisms affect decision-making in C. elegans , 2011, Nature.

[8]  Aravinthan D. T. Samuel,et al.  Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans , 2011, Nature Methods.

[9]  Matthew M. Crane,et al.  Real-time multimodal optical control of neurons and muscles in freely-behaving Caenorhabditis elegans , 2011, Nature Methods.

[10]  Anatol C. Kreitzer,et al.  Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry , 2010, Nature.

[11]  S. Grillner,et al.  Measured motion: searching for simplicity in spinal locomotor networks , 2009, Current Opinion in Neurobiology.

[12]  Sharad Ramanathan,et al.  Optical interrogation of neural circuits in Caenorhabditis elegans , 2009, Nature Methods.

[13]  N. A. Croll Components and patterns in the behaviour of the nematode Caenorhabditis elegans , 2009 .

[14]  H. Horvitz,et al.  Ligand-Gated Chloride Channels Are Receptors for Biogenic Amines in C. elegans , 2009, Science.

[15]  Mark J. Alkema,et al.  A Tyramine-Gated Chloride Channel Coordinates Distinct Motor Programs of a Caenorhabditis elegans Escape Response , 2009, Neuron.

[16]  Robert Steven,et al.  Three Distinct Amine Receptors Operating at Different Levels within the Locomotory Circuit Are Each Essential for the Serotonergic Modulation of Chemosensation in Caenorhabditis elegans , 2009, The Journal of Neuroscience.

[17]  Chuan Zhou,et al.  A subset of octopaminergic neurons are important for Drosophila aggression , 2008, Nature Neuroscience.

[18]  F. Engert,et al.  Escape Behavior Elicited by Single, Channelrhodopsin-2-Evoked Spikes in Zebrafish Somatosensory Neurons , 2008, Current Biology.

[19]  Daniel Ramot,et al.  The Parallel Worm Tracker: A Platform for Measuring Average Speed and Drug-Induced Paralysis in Nematodes , 2008, PloS one.

[20]  Michael Dybbs,et al.  An RNAi Screen Identifies Genes that Regulate GABA Synapses , 2008, Neuron.

[21]  P. Komuniecki,et al.  Tyramine and Octopamine Independently Inhibit Serotonin-Stimulated Aversive Behaviors in Caenorhabditis elegans through Two Novel Amine Receptors , 2007, The Journal of Neuroscience.

[22]  Feng Zhang,et al.  Multimodal fast optical interrogation of neural circuitry , 2007, Nature.

[23]  E. Kravitz,et al.  Modulation of Drosophila male behavioral choice , 2007, Proceedings of the National Academy of Sciences.

[24]  P. Cosman,et al.  Machine vision based detection of omega bends and reversals in C. elegans , 2006, Journal of Neuroscience Methods.

[25]  E. Bamberg,et al.  Light Activation of Channelrhodopsin-2 in Excitable Cells of Caenorhabditis elegans Triggers Rapid Behavioral Responses , 2005, Current Biology.

[26]  Stephen E. Von Stetina,et al.  acr-16 Encodes an Essential Subunit of the Levamisole-resistant Nicotinic Receptor at the Caenorhabditis elegans Neuromuscular Junction* , 2005, Journal of Biological Chemistry.

[27]  Robert J. Hobson,et al.  TYRA‐2 (F01E11.5): a Caenorhabditis elegans tyramine receptor expressed in the MC and NSM pharyngeal neurons , 2005, Journal of neurochemistry.

[28]  A. V. Maricq,et al.  The Ror Receptor Tyrosine Kinase CAM-1 Is Required for ACR-16-Mediated Synaptic Transmission at the C. elegans Neuromuscular Junction , 2005, Neuron.

[29]  Mark J Alkema,et al.  Tyramine Functions Independently of Octopamine in the Caenorhabditis elegans Nervous System , 2005, Neuron.

[30]  Susana Q. Lima,et al.  Remote Control of Behavior through Genetically Targeted Photostimulation of Neurons , 2005, Cell.

[31]  Cori Bargmann,et al.  A circuit for navigation in Caenorhabditis elegans , 2005 .

[32]  J. Rillich,et al.  Octopamine and Experience-Dependent Modulation of Aggression in Crickets , 2005, The Journal of Neuroscience.

[33]  A. Jose,et al.  Domains, Amino Acid Residues, and New Isoforms of Caenorhabditis elegans Diacylglycerol Kinase 1 (DGK-1) Important for Terminating Diacylglycerol Signaling in Vivo* , 2005, Journal of Biological Chemistry.

[34]  V. Ganapathy,et al.  A Na+/Cl–-coupled GABA Transporter, GAT-1, from Caenorhabditis elegans , 2005, Journal of Biological Chemistry.

[35]  T. Roeder Tyramine and octopamine: ruling behavior and metabolism. , 2005, Annual review of entomology.

[36]  S. Molitor,et al.  Tyramine receptor (SER‐2) isoforms are involved in the regulation of pharyngeal pumping and foraging behavior in Caenorhabditis elegans , 2004, Journal of neurochemistry.

[37]  Michael R Koelle,et al.  Mechanism of extrasynaptic dopamine signaling in Caenorhabditis elegans , 2004, Nature Neuroscience.

[38]  Kyuhyung Kim,et al.  Expression and regulation of an FMRFamide‐related neuropeptide gene family in Caenorhabditis elegans , 2004, The Journal of comparative neurology.

[39]  M. Brede,et al.  alpha2-adrenergic receptor subtypes - novel functions uncovered in gene-targeted mouse models. , 2004, Biology of the cell.

[40]  L. Avery,et al.  LIM homeobox gene-dependent expression of biogenic amine receptors in restricted regions of the C. elegans nervous system. , 2003, Developmental biology.

[41]  Oliver Hobert,et al.  Two Neuronal, Nuclear-Localized RNA Binding Proteins Involved in Synaptic Transmission , 2003, Current Biology.

[42]  Beibei Zhao,et al.  Reversal Frequency in Caenorhabditis elegans Represents an Integrated Response to the State of the Animal and Its Environment , 2003, The Journal of Neuroscience.

[43]  M. Labouesse [Caenorhabditis elegans]. , 2003, Medecine sciences : M/S.

[44]  R. Komuniecki,et al.  Characterization of a tyramine receptor from Caenorhabditis elegans , 2002, Journal of Neurochemistry.

[45]  B. Brembs,et al.  Drosophila as a new model organism for the neurobiology of aggression? , 2002, The Journal of experimental biology.

[46]  E. Marder,et al.  Central pattern generators and the control of rhythmic movements , 2001, Current Biology.

[47]  S. Hallam,et al.  The C. elegans NeuroD homolog cnd-1 functions in multiple aspects of motor neuron fate specification. , 2000, Development.

[48]  H. Pflüger Neuromodulation during motor development and behavior , 1999, Current Opinion in Neurobiology.

[49]  K. Miller,et al.  Goα and Diacylglycerol Kinase Negatively Regulate the Gqα Pathway in C. elegans , 1999, Neuron.

[50]  J. Kaplan,et al.  Serotonin Inhibition of Synaptic Transmission Gαo Decreases the Abundance of UNC-13 at Release Sites , 1999, Neuron.

[51]  E. Jorgensen,et al.  One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction , 1999, Nature Neuroscience.

[52]  H. Horvitz,et al.  Coordinated Transcriptional Regulation of the unc-25Glutamic Acid Decarboxylase and the unc-47 GABA Vesicular Transporter by the Caenorhabditis elegans UNC-30 Homeodomain Protein , 1999, The Journal of Neuroscience.

[53]  P. Sternberg,et al.  Antagonism between Goα and Gqα in Caenorhabditis elegans: the RGS protein EAT-16 is necessary for Goα signaling and regulates Gqα activity , 1999 .

[54]  H. Horvitz,et al.  The Caenorhabditis elegans Gene unc-25Encodes Glutamic Acid Decarboxylase and Is Required for Synaptic Transmission But Not Synaptic Development , 1999, The Journal of Neuroscience.

[55]  P. Sternberg,et al.  Antagonism between G(o)alpha and G(q)alpha in Caenorhabditis elegans: the RGS protein EAT-16 is necessary for G(o)alpha signaling and regulates G(q)alpha activity. , 1999, Genes & development.

[56]  K. Miller,et al.  Goalpha and diacylglycerol kinase negatively regulate the Gqalpha pathway in C. elegans. , 1999, Neuron.

[57]  J. Kaplan,et al.  Facilitation of synaptic transmission by EGL-30 Gqalpha and EGL-8 PLCbeta: DAG binding to UNC-13 is required to stimulate acetylcholine release. , 1999, Neuron.

[58]  P. Katz,et al.  Neuromodulation Intrinsic to the Central Pattern Generator for Escape Swimming in Tritonia a , 1998, Annals of the New York Academy of Sciences.

[59]  B. Ye,et al.  unc-3, a gene required for axonal guidance in Caenorhabditis elegans, encodes a member of the O/E family of transcription factors. , 1998, Development.

[60]  L. Avery,et al.  Mutations in a C. elegans Gqα Gene Disrupt Movement, Egg Laying, and Viability , 1996, Neuron.

[61]  L. Avery,et al.  Mutations in a C. elegans Gqalpha gene disrupt movement, egg laying, and viability. , 1996, Neuron.

[62]  B. Burrell,et al.  Modulation of the honey bee (Apis mellifera) sting response by octopamine , 1995 .

[63]  R R Hoy,et al.  The role of neurohormonal octopamine during 'fight or flight' behaviour in the field cricket Gryllus bimaculatus. , 1995, The Journal of experimental biology.

[64]  W. Schafer,et al.  A calcium-channel homologue required for adaptation to dopamine and serotonin in Caenorhabditis elegans , 1995, Nature.

[65]  Jeremy Mendel,et al.  Participation of the protein Go in multiple aspects of behavior in C. elegans , 1995, Science.

[66]  L. Ségalat,et al.  Modulation of serotonin-controlled behaviors by Go in Caenorhabditis elegans , 1995, Science.

[67]  S. R. Wicks,et al.  Integration of mechanosensory stimuli in Caenorhabditis elegans , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[68]  Cori Bargmann,et al.  Laser killing of cells in Caenorhabditis elegans. , 1995, Methods in cell biology.

[69]  H. Horvitz,et al.  The GABAergic nervous system of Caenorhabditis elegans , 1993, Nature.

[70]  M. Nonet,et al.  Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin , 1993, Cell.

[71]  Bertil Hille,et al.  G protein-coupled mechanisms and nervous signaling , 1992, Neuron.

[72]  N. Munakata [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[73]  Randolf Menzel,et al.  Chemical codes for the control of behaviour in arthropods , 1989, Nature.

[74]  E. Kravitz Hormonal control of behavior: amines and the biasing of behavioral output in lobsters. , 1988, Science.

[75]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[76]  S. Brenner,et al.  The neural circuit for touch sensitivity in Caenorhabditis elegans , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[77]  G. Hoyle Generation of Behaviour: the Orchestration Hypothesis , 1985 .

[78]  L. R. Taylor,et al.  Spatial Orientation: The Spatial Control of Behaviour in Animals and Man , 1985 .

[79]  H. Horvitz,et al.  Serotonin and octopamine in the nematode Caenorhabditis elegans. , 1982, Science.

[80]  A Na (cid:1) /Cl (cid:2) -coupled GABA Transporter, GAT-1, from Caenorhabditis elegans STRUCTURAL AND FUNCTIONAL FEATURES, SPECIFIC EXPRESSION IN GABA-ERGIC NEURONS, AND INVOLVEMENT IN MUSCLE FUNCTION* , 2022 .