The nested Sinkhorn divergence to learn the nested distance
暂无分享,去创建一个
[1] Marco Cuturi,et al. Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.
[2] Jérémie Bigot,et al. Central limit theorems for entropy-regularized optimal transport on finite spaces and statistical applications , 2017, Electronic Journal of Statistics.
[3] G. Pflug,et al. Multistage Stochastic Optimization , 2014 .
[4] Georg Ch. Pflug,et al. Version-Independence and Nested Distributions in Multistage Stochastic Optimization , 2009, SIAM J. Optim..
[5] M. Sion. On general minimax theorems , 1958 .
[6] Milos Kopa,et al. Evaluation of scenario reduction algorithms with nested distance , 2020, Comput. Manag. Sci..
[7] Bernhard Korte,et al. On the RAS-algorithm , 1979, Computing.
[8] Abraham I. Brodt,et al. MIN-MAD life: A multi-period optimization model for life insurance company investment decisions , 1983 .
[9] L. Rüschendorf. Convergence of the iterative proportional fitting procedure , 1995 .
[10] N. C. P. Edirisinghe,et al. Multiperiod Portfolio Optimization with Terminal Liability: Bounds for the Convex Case , 2005, Comput. Optim. Appl..
[11] Georg Ch. Pflug,et al. ScenTrees.jl: A Julia Package for Generating Scenario Trees and Scenario Lattices for Multistage Stochastic Programming , 2020, J. Open Source Softw..
[12] S. Rachev,et al. Mass transportation problems , 1998 .
[13] Georg Ch. Pflug,et al. Guaranteed Bounds for General Nondiscrete Multistage Risk-Averse Stochastic Optimization Programs , 2019, SIAM J. Optim..
[14] Jason Altschuler,et al. Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration , 2017, NIPS.
[15] Gustavo K. Rohde,et al. Optimal Mass Transport: Signal processing and machine-learning applications , 2017, IEEE Signal Processing Magazine.
[16] Jean-Philippe Chancelier,et al. Dynamic consistency for stochastic optimal control problems , 2012, Ann. Oper. Res..
[17] Georg Ch. Pflug,et al. A Distance For Multistage Stochastic Optimization Models , 2012, SIAM J. Optim..
[18] Raimund M. Kovacevic,et al. Tree approximation for discrete time stochastic processes: a process distance approach , 2015, Annals of Operations Research.
[19] Erlon Cristian Finardi,et al. Application of Scenario Tree Reduction Via Quadratic Process to Medium-Term Hydrothermal Scheduling Problem , 2017, IEEE Transactions on Power Systems.
[20] Kirk Pruhs,et al. Proceedings of the eighteenth annual ACM-SIAM Symposium on discrete algorithms, SODA'07, New Orleans LA, USA, January 7-9, 2007 , 2007 .
[21] Werner Römisch,et al. Stability of Multistage Stochastic Programs , 2006, SIAM J. Optim..
[22] Georg Ch. Pflug,et al. On distributionally robust multiperiod stochastic optimization , 2014, Comput. Manag. Sci..
[23] D. Bertsekas,et al. The auction algorithm for the transportation problem , 1989 .
[24] Jim Freeman. Probability Metrics and the Stability of Stochastic Models , 1991 .
[25] Richard Sinkhorn,et al. Concerning nonnegative matrices and doubly stochastic matrices , 1967 .
[26] Gabriel Peyré,et al. Computational Optimal Transport , 2018, Found. Trends Mach. Learn..
[27] Richard Sinkhorn. Diagonal equivalence to matrices with prescribed row and column sums. II , 1967 .
[28] Jean-Philippe Chancelier,et al. Stochastic Multi-Stage Optimization , 2015 .