The nested Sinkhorn divergence to learn the nested distance

The nested distance builds on the Wasserstein distance to quantify the difference of stochastic processes, including also the evolution of information modelled by filtrations. The Sinkhorn divergence is a relaxation of the Wasserstein distance, which can be computed considerably faster. For this reason we employ the Sinkhorn divergence and take advantage of the related (fixed point) iteration algorithm. Furthermore, we investigate the transition of the entropy throughout the stages of the stochastic process and provide an entropy-regularized nested distance formulation, including a characterization of its dual. Numerical experiments affirm the computational advantage and supremacy.

[1]  Marco Cuturi,et al.  Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.

[2]  Jérémie Bigot,et al.  Central limit theorems for entropy-regularized optimal transport on finite spaces and statistical applications , 2017, Electronic Journal of Statistics.

[3]  G. Pflug,et al.  Multistage Stochastic Optimization , 2014 .

[4]  Georg Ch. Pflug,et al.  Version-Independence and Nested Distributions in Multistage Stochastic Optimization , 2009, SIAM J. Optim..

[5]  M. Sion On general minimax theorems , 1958 .

[6]  Milos Kopa,et al.  Evaluation of scenario reduction algorithms with nested distance , 2020, Comput. Manag. Sci..

[7]  Bernhard Korte,et al.  On the RAS-algorithm , 1979, Computing.

[8]  Abraham I. Brodt,et al.  MIN-MAD life: A multi-period optimization model for life insurance company investment decisions , 1983 .

[9]  L. Rüschendorf Convergence of the iterative proportional fitting procedure , 1995 .

[10]  N. C. P. Edirisinghe,et al.  Multiperiod Portfolio Optimization with Terminal Liability: Bounds for the Convex Case , 2005, Comput. Optim. Appl..

[11]  Georg Ch. Pflug,et al.  ScenTrees.jl: A Julia Package for Generating Scenario Trees and Scenario Lattices for Multistage Stochastic Programming , 2020, J. Open Source Softw..

[12]  S. Rachev,et al.  Mass transportation problems , 1998 .

[13]  Georg Ch. Pflug,et al.  Guaranteed Bounds for General Nondiscrete Multistage Risk-Averse Stochastic Optimization Programs , 2019, SIAM J. Optim..

[14]  Jason Altschuler,et al.  Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration , 2017, NIPS.

[15]  Gustavo K. Rohde,et al.  Optimal Mass Transport: Signal processing and machine-learning applications , 2017, IEEE Signal Processing Magazine.

[16]  Jean-Philippe Chancelier,et al.  Dynamic consistency for stochastic optimal control problems , 2012, Ann. Oper. Res..

[17]  Georg Ch. Pflug,et al.  A Distance For Multistage Stochastic Optimization Models , 2012, SIAM J. Optim..

[18]  Raimund M. Kovacevic,et al.  Tree approximation for discrete time stochastic processes: a process distance approach , 2015, Annals of Operations Research.

[19]  Erlon Cristian Finardi,et al.  Application of Scenario Tree Reduction Via Quadratic Process to Medium-Term Hydrothermal Scheduling Problem , 2017, IEEE Transactions on Power Systems.

[20]  Kirk Pruhs,et al.  Proceedings of the eighteenth annual ACM-SIAM Symposium on discrete algorithms, SODA'07, New Orleans LA, USA, January 7-9, 2007 , 2007 .

[21]  Werner Römisch,et al.  Stability of Multistage Stochastic Programs , 2006, SIAM J. Optim..

[22]  Georg Ch. Pflug,et al.  On distributionally robust multiperiod stochastic optimization , 2014, Comput. Manag. Sci..

[23]  D. Bertsekas,et al.  The auction algorithm for the transportation problem , 1989 .

[24]  Jim Freeman Probability Metrics and the Stability of Stochastic Models , 1991 .

[25]  Richard Sinkhorn,et al.  Concerning nonnegative matrices and doubly stochastic matrices , 1967 .

[26]  Gabriel Peyré,et al.  Computational Optimal Transport , 2018, Found. Trends Mach. Learn..

[27]  Richard Sinkhorn Diagonal equivalence to matrices with prescribed row and column sums. II , 1967 .

[28]  Jean-Philippe Chancelier,et al.  Stochastic Multi-Stage Optimization , 2015 .