Anisotropy in MHD turbulence due to a mean magnetic field

The development of anisotropy in an initially isotropic spectrum is studied numerically for two-dimensional magnetohydrodynamic turbulence. The anisotropy develops due to the combined effects of an externally imposed dc magnetic field and viscous and resistive dissipation at high wave numbers. The effect is most pronounced at high mechanical and magnetic Reynolds numbers. The anisotropy is greater at the higher wave numbers.

[1]  Magnetic dynamo action in two-dimensional turbulent magneto-hydrodynamics , 1977 .

[2]  A. W. E. E. K. L. Y. J. O U R N A L D E V O T E D T O T H E A D V A N C E,et al.  S C I E N C E , 2022 .

[3]  S. Orszag,et al.  Small-scale structure of two-dimensional magnetohydrodynamic turbulence , 1979, Journal of Fluid Mechanics.

[4]  W. Matthaeus,et al.  SELECTIVE DECAY HYPOTHESIS AT HIGH MECHANICAL AND MAGNETIC REYNOLDS NUMBERS * , 1980 .

[5]  M. G. Rusbridge,et al.  The partition of energy in a turbulent plasma , 1968 .

[6]  C. Leith,et al.  Developments in the theory of turbulence , 1973 .

[7]  David Montgomery,et al.  Two-Dimensional Turbulence , 2012 .

[8]  D. Fyfe,et al.  High-beta turbulence in two-dimensional magnetohydrodynamics , 1975, Journal of Plasma Physics.

[9]  M. G. Rusbridge Energy flow in the zeta discharge , 1969 .

[10]  Dissipative, forced turbulence in two-dimensional magnetohydrodynamics , 1977 .

[11]  G. S. Patterson,et al.  Spectral Calculations of Isotropic Turbulence: Efficient Removal of Aliasing Interactions , 1971 .

[12]  R. Taylor,et al.  Phenomenological comparison of magnetic and electrostatic fluctuations in the Macrotor tokamak , 1981 .

[13]  A. Pouquet On two-dimensional magnetohydrodynamic turbulence , 1978, Journal of Fluid Mechanics.

[14]  D. Montgomery Major disruptions, inverse cascades, and the Strauss equations. [Current-carrying plasmas] , 1982 .

[15]  M. G. Rusbridge,et al.  Structure of Turbulence in the Zeta Plasma , 1971 .

[16]  W. Matthaeus,et al.  Nonlinear evolution of the sheet pinch , 1981, Journal of Plasma Physics.

[17]  M. Hendershott,et al.  Stochastic closure for nonlinear Rossby waves , 1977, Journal of Fluid Mechanics.

[18]  H. R. Strauss,et al.  Nonlinear, three‐dimensional magnetohydrodynamics of noncircular tokamaks , 1976 .

[19]  S. Orszag Numerical Simulation of Incompressible Flows Within Simple Boundaries. I. Galerkin (Spectral) Representations , 1971 .

[20]  C. Menyuk,et al.  Small-Scale Magnetic Fluctuations Inside the Macrotor Tokamak. , 1979 .