Coexistence of Magnetic Order and Ferroelectricity at 2D Nanosheet Interfaces.

Multiferroic materials, in which the electronic polarization can be switched by a magnetic field and vice versa, are of fundamental importance for new electronic technologies. However, there exist very few single-phase materials that exhibit such cross-coupling properties at room temperature, and heterostructures with a strong magnetoelectric coupling have only been made with complex techniques. Here, we present a rational design for multiferroic materials by use of a layer-by-layer engineering of 2D nanosheets. Our approach to new multiferroic materials is the artificial construction of high-quality superlattices by interleaving ferromagnetic Ti0.8Co0.2O2 nanosheets with dielectric perovskite-structured Ca2Nb3O10 nanosheets. Such an artificial structuring allows us to engineer the interlayer coupling, and the (Ti0.8Co0.2O2/Ca2Nb3O10/Ti0.8Co0.2O2) superlattices induce room-temperature ferroelectricity in the presence of the ferromagnetic order. Our technique provides a new route for tailoring artificial multiferroic materials in a highly controllable manner.

[1]  T. Sasaki,et al.  Titania Nanostructured Films Derived from a Titania Nanosheet/Polycation Multilayer Assembly via Heat Treatment and UV Irradiation , 2002 .

[2]  U. Staub,et al.  Artificial multiferroic heterostructures , 2013 .

[3]  T. Sasaki,et al.  Fabrication of densely packed titania nanosheet films on solid surface by use of Langmuir-Blodgett deposition method without amphiphilic additives. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[4]  M. Osada,et al.  Gigantic Magneto–Optical Effects in Multilayer Assemblies of Two‐Dimensional Titania Nanosheets , 2006 .

[5]  M. Osada,et al.  Ferromagnetism in two-dimensional Ti 0.8 Co 0.2 O 2 nanosheets , 2006 .

[6]  Philippe Ghosez,et al.  Improper ferroelectricity in perovskite oxide artificial superlattices , 2008, Nature.

[7]  Minoru Osada,et al.  Engineered interfaces of artificial perovskite oxide superlattices via nanosheet deposition process. , 2010, ACS nano.

[8]  Y. Tokura,et al.  Ferroelectricity and giant magnetocapacitance in perovskite rare-earth manganites. , 2004, Physical review letters.

[9]  M. Osada,et al.  Robust high-κ response in molecularly thin perovskite nanosheets. , 2010, ACS nano.

[10]  Nicola A. Hill,et al.  Why Are There so Few Magnetic Ferroelectrics , 2000 .

[11]  R. Ramesh,et al.  Multiferroics: progress and prospects in thin films. , 2007, Nature materials.

[12]  M. Osada,et al.  Artificial design for new ferroelectrics using nanosheet-architectonics concept , 2015, Nanotechnology.

[13]  M. Osada,et al.  Controlled doping of semiconducting titania nanosheets for tailored spinelectronic materials. , 2014, Nanoscale.

[14]  Darrell G. Schlom,et al.  A Thin Film Approach to Engineering Functionality into Oxides , 2008 .

[15]  Zhenxiang Cheng,et al.  Large magnetoelectric coupling in magnetically short-range ordered Bi5Ti3FeO15 film , 2014, Scientific Reports.

[16]  Ce-Wen Nan,et al.  Multiferroic magnetoelectric composite nanostructures , 2010 .

[17]  T. Sasaki,et al.  Study on exfoliation of layered perovskite-type niobates , 2002 .

[18]  R. Ramesh,et al.  Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures , 2003, Science.

[19]  R. Whatmore,et al.  Magnetic Field-Induced Ferroelectric Switching in Multiferroic Aurivillius Phase Thin Films at Room Temperature , 2013 .

[20]  Minoru Osada,et al.  Two‐Dimensional Dielectric Nanosheets: Novel Nanoelectronics From Nanocrystal Building Blocks , 2012, Advanced materials.

[21]  M. Osada,et al.  Construction of highly ordered lamellar nanostructures through Langmuir-Blodgett deposition of molecularly thin titania nanosheets tens of micrometers wide and their excellent dielectric properties. , 2009, ACS nano.

[22]  N. Mathur,et al.  Multiferroic and magnetoelectric materials , 2006, Nature.

[23]  B. S. Kang,et al.  Lanthanum-substituted bismuth titanate for use in non-volatile memories , 1999, Nature.

[24]  Nicola A. Spaldin,et al.  The Renaissance of Magnetoelectric Multiferroics , 2005, Science.

[25]  S. Cheong,et al.  Multiferroics: a magnetic twist for ferroelectricity. , 2007, Nature materials.

[26]  Y. Tokura,et al.  Magnetic control of ferroelectric polarization , 2003, Nature.