Mapping limbic network organization in temporal lobe epilepsy using morphometric correlations: Insights on the relation between mesiotemporal connectivity and cortical atrophy

Temporal lobe epilepsy (TLE) is considered primarily a limbic disorder. Our purpose was to map limbic network organization in TLE and to statistically relate it to neocortical atrophy. We performed MRI-based cortical thickness analysis in 110 TLE patients (including 68 patients with hippocampal atrophy and 42 patients with normal hippocampal volume) and 46 healthy controls. Limbic connectivity was statistically inferred by correlating mean thickness of the entorhinal cortex (EC) with thickness at each vertex across the entire neocortex. The EC was chosen as seed region since it is the link between the neocortex and the hippocampal formation. Patients showed cortical thinning mainly in temporal and fronto-central neocortices, with a prevalence of atrophy in up to 35%. In controls, EC networks corresponded closely to known anatomical connections. In TLE the pattern of correlations was similar to controls, suggesting that pathological processes in the EC affect the same networks that co-vary with the EC in the healthy brain. Nevertheless, we found decreases in correlations mainly in the temporal lobe and increases mainly in orbitofrontal cortices. Although our analysis indicated alterations in the temporo-limbic network in TLE, there was no association between mesiotemporal connectivity and atrophy across the entire cortical surface. This divergence underlines the complexity of the pathophysiological mechanisms leading to neocortical atrophy in TLE.

[1]  Luis Concha,et al.  Bilateral limbic diffusion abnormalities in unilateral temporal lobe epilepsy , 2005, Annals of neurology.

[2]  J. Régis,et al.  The role of corticothalamic coupling in human temporal lobe epilepsy. , 2006, Brain : a journal of neurology.

[3]  R. Köhling,et al.  Ionotropic glutamate and GABA receptors in human epileptic neocortical tissue: quantitative in vitro receptor autoradiography , 1999, Neuroscience.

[4]  B. Meldrum,et al.  Decrease in excitatory transmission within the lateral habenula and the mediodorsal thalamus protects against limbic seizures in rats , 1988, Experimental Neurology.

[5]  J. Suckling,et al.  Mapping the brain in autism. A voxel-based MRI study of volumetric differences and intercorrelations in autism. , 2004, Brain : a journal of neurology.

[6]  C R Houser,et al.  Morphological changes in the dentate gyrus in human temporal lobe epilepsy. , 1992, Epilepsy research. Supplement.

[7]  O. Markand,et al.  HIPDM Single Photon Emission Computed Tomography Brain Imaging in Partial Onset Secondarily Generalized Tonic‐Clonic Seizures , 1987, Epilepsia.

[8]  L Lemieux,et al.  Extrahippocampal temporal lobe atrophy in temporal lobe epilepsy and mesial temporal sclerosis. , 2001, Brain : a journal of neurology.

[9]  Alan C. Evans,et al.  Automatic "pipeline" analysis of 3-D MRI data for clinical trials: application to multiple sclerosis , 2002, IEEE Transactions on Medical Imaging.

[10]  E. G. Jones,et al.  Differential thalamic relationships of sensory‐motor and parietal cortical fields in monkeys , 1979, The Journal of comparative neurology.

[11]  A. Palmini,et al.  Terminology and classification of the cortical dysplasias , 2004, Neurology.

[12]  A. Toga,et al.  Tracking Alzheimer's Disease , 2007, Annals of the New York Academy of Sciences.

[13]  W. Feindel,et al.  Entorhinal cortex in temporal lobe epilepsy , 1999, Neurology.

[14]  E. Cavalheiro,et al.  Limbic seizures produced by pilocarpine in rats: Behavioural, electroencephalographic and neuropathological study , 1983, Behavioural Brain Research.

[15]  D. Mcintyre,et al.  Perirhinal cortex involvement in limbic kindled seizures , 1996, Epilepsy Research.

[16]  Bruce Fischl,et al.  Cerebral cortex and the clinical expression of Huntington's disease: complexity and heterogeneity. , 2008, Brain : a journal of neurology.

[17]  Seung Bong Hong,et al.  Cerebral perfusion changes in mesial temporal lobe epilepsy: SPM analysis of ictal and interictal SPECT , 2005, NeuroImage.

[18]  Alan C. Evans,et al.  A nonparametric method for automatic correction of intensity nonuniformity in MRI data , 1998, IEEE Transactions on Medical Imaging.

[19]  Paul M. Thompson,et al.  Structural Abnormalities in the Brains of Human Subjects Who Use Methamphetamine , 2004, The Journal of Neuroscience.

[20]  N Butters,et al.  Cortical Afferents to the Entorhinal Cortex of the Rhesus Monkey , 1972, Science.

[21]  J H Margerison,et al.  Epilepsy and the temporal lobes. A clinical, electroencephalographic and neuropathological study of the brain in epilepsy, with particular reference to the temporal lobes. , 1966, Brain : a journal of neurology.

[22]  C Munari,et al.  Somatomotor Manifestations in Temporal Lobe Seizures , 1984, Epilepsia.

[23]  K. Gale,et al.  Mediodorsal Thalamus Plays a Critical Role in the Development of Limbic Motor Seizures , 1998, The Journal of Neuroscience.

[24]  Alan C. Evans,et al.  Automated 3-D Extraction of Inner and Outer Surfaces of Cerebral Cortex from MRI , 2000, NeuroImage.

[25]  R. Woods,et al.  Sex differences in cortical thickness mapped in 176 healthy individuals between 7 and 87 years of age. , 2007, Cerebral cortex.

[26]  Jerome Engel,et al.  Surgical treatment of the epilepsies , 1993 .

[27]  Seung Bong Hong,et al.  Ictal hyperperfusion patterns according to the progression of temporal lobe seizures , 2002, Neurology.

[28]  Jerome Engel,et al.  Role of the Frontal Lobes in the Propagation of Mesial Temporal Lobe Seizures , 1991, Epilepsia.

[29]  Takashi Asada,et al.  Functional interactions between entorhinal cortex and posterior cingulate cortex at the very early stage of Alzheimer's disease using brain perfusion single-photon emission computed tomography , 2006, Nuclear medicine communications.

[30]  J. Cheverud,et al.  Quantitative genetics and developmental constraints on evolution by selection. , 1984, Journal of theoretical biology.

[31]  François Mauguière,et al.  Involvement of Medial Pulvinar Thalamic Nucleus in Human Temporal Lobe Seizures , 2006, Epilepsia.

[32]  D. Amaral,et al.  The entorhinal cortex of the monkey: II. Cortical afferents , 1987, The Journal of comparative neurology.

[33]  Adam M. Brickman,et al.  Cortical intercorrelations of temporal area volumes in schizophrenia , 2005, Schizophrenia Research.

[34]  J. Baron,et al.  Neocortical and hippocampal glucose hypometabolism following neurotoxic lesions of the entorhinal and perirhinal cortices in the non-human primate as shown by PET. Implications for Alzheimer's disease. , 1999, Brain : a journal of neurology.

[35]  M. Witter,et al.  Entorhinal cortex of the rat: Cytoarchitectonic subdivisions and the origin and distribution of cortical efferents , 1998, Hippocampus.

[36]  E. Bertram,et al.  The Relevance of Kindling for Human Epilepsy , 2007, Epilepsia.

[37]  Deepak N. Pandya,et al.  Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. II. Frontal lobe afferents , 1975, Brain Research.

[38]  Neda Bernasconi,et al.  Temporal lobe epilepsy: Differential pattern of damage in temporopolar cortex and white matter , 2008, Human brain mapping.

[39]  Agatha D. Lee,et al.  Reduced neocortical thickness and complexity mapped in mesial temporal lobe epilepsy with hippocampal sclerosis. , 2007, Cerebral cortex.

[40]  Pablo A. Rio,et al.  Voxel-based morphometry reveals gray matter network atrophy in refractory medial temporal lobe epilepsy. , 2004, Archives of neurology.

[41]  D. Amaral,et al.  Entorhinal cortex of the monkey: V. Projections to the dentate gyrus, hippocampus, and subicular complex , 1991, The Journal of comparative neurology.

[42]  Dan C McIntyre,et al.  Parahippocampal networks, intractability, and the chronic epilepsy of kindling. , 2006, Advances in neurology.

[43]  Steven Robbins,et al.  An unbiased iterative group registration template for cortical surface analysis , 2007, NeuroImage.

[44]  A MEYER,et al.  Aetiological Aspects of Ammon's Horn Sclerosis Associated with Temporal Lobe Epilepsy* , 1956, British medical journal.

[45]  Bruce Hermann,et al.  Ipsilateral and Contralateral MRI Volumetric Abnormalities in Chronic Unilateral Temporal Lobe Epilepsy and their Clinical Correlates , 2005, Epilepsia.

[46]  M Vapalahti,et al.  MR volumetry of the entorhinal, perirhinal, and temporopolar cortices in drug-refractory temporal lobe epilepsy. , 2001, AJNR. American journal of neuroradiology.

[47]  Thomas R. Barrick,et al.  Voxel based morphometry of hippocampal and extra-hippocampal effects of unilateral temporal lobe epilepsy , 2001, NeuroImage.

[48]  Moo K. Chung,et al.  Deformation-based surface morphometry applied to gray matter deformation , 2003, NeuroImage.

[49]  Colin Studholme,et al.  Positive and negative network correlations in temporal lobe epilepsy. , 2004, Cerebral cortex.

[50]  Deanna Greenstein,et al.  Cortical morphology in children and adolescents with different apolipoprotein E gene polymorphisms: an observational study , 2007, The Lancet Neurology.

[51]  J. Isnard,et al.  Hippocampal-orbitofrontal connectivity in human: An electrical stimulation study , 2005, Clinical Neurophysiology.

[52]  House Cr,et al.  Morphological changes in the dentate gyrus in human temporal lobe epilepsy. , 1992 .

[53]  Piotr J Franaszczuk,et al.  Intrinsic Ictal Dynamics at the Seizure Focus: Effects of Secondary Generalization Revealed by Complexity Measures , 2007, Epilepsia.

[54]  Timothy Edward John Behrens,et al.  Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging , 2003, Nature Neuroscience.

[55]  D. Amaral,et al.  Evidence for a direct projection from the superior temporal gyrus to the entorhinal cortex in the monkey , 1983, Brain Research.

[56]  Neda Bernasconi,et al.  Quantitative analysis of temporal lobe white matter T2 relaxation time in temporal lobe epilepsy , 2004, NeuroImage.

[57]  D. Louis Collins,et al.  Tuning and Comparing Spatial Normalization Methods , 2003, MICCAI.

[58]  D. Amaral,et al.  The entorhinal cortex of the monkey: III. Subcortical afferents , 1987, The Journal of comparative neurology.

[59]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[60]  Alan C. Evans,et al.  Intellectual ability and cortical development in children and adolescents , 2006, Nature.

[61]  Robin M. Murray,et al.  Does dysplasia cause anatomical dysconnectivity in schizophrenia? , 1998, Schizophrenia Research.

[62]  J. Engel,et al.  Glutamate currents in morphologically identified human dentate granule cells in temporal lobe epilepsy. , 1997, Journal of neurophysiology.

[63]  Alan C. Evans,et al.  Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification , 2005, NeuroImage.

[64]  Deepak N. Pandya,et al.  Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. III. Efferent connections , 1975, Brain Research.

[65]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[66]  Alan C. Evans,et al.  Focal cortical atrophy in multiple sclerosis: Relation to lesion load and disability , 2007, NeuroImage.

[67]  P Dupont,et al.  SPECT perfusion changes during complex partial seizures in patients with hippocampal sclerosis. , 2003, Brain : a journal of neurology.

[68]  Massimo Avoli,et al.  Rat subicular networks gate hippocampal output activity in an in vitro model of limbic seizures , 2005, The Journal of physiology.

[69]  B. Devaux,et al.  Dystonic posturing in seizures of mesial temporal origin , 2005, Neurology.

[70]  Jerome Engel,et al.  Outcome with respect to epileptic seizures. , 1993 .

[71]  F. Mauguière,et al.  The role of the insular cortex in temporal lobe epilepsy , 2000, Annals of neurology.

[72]  Jason Freeman,et al.  Selective frontal, parietal, and temporal networks in generalized seizures , 2003, NeuroImage.

[73]  G. Gratton,et al.  Combining structural and functional neuroimaging data for studying brain connectivity: a review. , 2008, Psychophysiology.

[74]  Alan C. Evans,et al.  Cortical thickness analysis examined through power analysis and a population simulation , 2005, NeuroImage.

[75]  Klaus Lehnertz,et al.  How generalised are secondarily “generalised” tonic–clonic seizures? , 2007, Journal of Neurology, Neurosurgery & Psychiatry.

[76]  P. Gloor The Temporal Lobe and Limbic System , 1997 .

[77]  Neda Bernasconi,et al.  α-[11C] methyl-L-tryptophan and glucose metabolism in patients with temporal lobe epilepsy , 2003, Neurology.

[78]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[79]  Ricardo Miledi,et al.  Abnormal GABAA receptors from the human epileptic hippocampal subiculum microtransplanted to Xenopus oocytes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[80]  Fabrice Wendling,et al.  Entorhinal Cortex Involvement in Human Mesial Temporal Lobe Epilepsy: An Electrophysiologic and Volumetric Study , 2005, Epilepsia.

[81]  Karl J. Friston,et al.  Voxel-based morphometry , 2007 .

[82]  N. Fountain,et al.  Functional anatomy of limbic epilepsy: a proposal for central synchronization of a diffusely hyperexcitable network , 1998, Epilepsy Research.

[83]  T L Babb,et al.  Functional connections in the human temporal lobe , 2004, Experimental Brain Research.

[84]  D. Arnold,et al.  Mesial temporal damage in temporal lobe epilepsy: a volumetric MRI study of the hippocampus, amygdala and parahippocampal region. , 2003, Brain : a journal of neurology.

[85]  C. Adam,et al.  Temporal and Spatial Characteristics of Intracerebral Seizure Propagation: Predictive Value in Surgery for Temporal Lobe Epilepsy , 1994, Epilepsia.

[86]  John S. Duncan,et al.  Noninvasive in vivo demonstration of the connections of the human parahippocampal gyrus , 2004, NeuroImage.

[87]  F Giangaspero,et al.  Rundown of GABA type A receptors is a dysfunction associated with human drug-resistant mesial temporal lobe epilepsy. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[88]  Jullie W Pan,et al.  A subcortical network of dysfunction in TLE measured by magnetic resonance spectroscopy , 2007, Neurology.

[89]  M Diksic,et al.  Alpha-[11C] methyl-L-tryptophan and glucose metabolism in patients with temporal lobe epilepsy. , 2003, Neurology.

[90]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[91]  Fred L. Bookstein,et al.  “Voxel-Based Morphometry” Should Not Be Used with Imperfectly Registered Images , 2001, NeuroImage.

[92]  Z. Bortolotto,et al.  Long‐Term Effects of Pilocarpine in Rats: Structural Damage of the Brain Triggers Kindling and Spontaneous I Recurrent Seizures , 1991, Epilepsia.

[93]  Jens C. Pruessner,et al.  Regional Frontal Cortical Volumes Decrease Differentially in Aging: An MRI Study to Compare Volumetric Approaches and Voxel-Based Morphometry , 2002, NeuroImage.

[94]  Frederick Andermann,et al.  Magnetic resonance imaging in temporal lobe epilepsy: Pathological correlations , 1987, Annals of neurology.

[95]  K M Bertashius,et al.  Propagation of human complex-partial seizures: a correlation analysis. , 1991, Electroencephalography and clinical neurophysiology.

[96]  Hal Blumenfeld,et al.  Neocortical and Thalamic Spread of Amygdala Kindled Seizures , 2007, Epilepsia.

[97]  Roberto Spreafico,et al.  Damage, Reorganization, and Abnormal Neocortical Hyperexcitability in the Pilocarpine Model of Temporal Lobe Epilepsy , 2002, Epilepsia.

[98]  Alan C. Evans,et al.  Spatial patterns of cortical thinning in mild cognitive impairment and Alzheimer's disease. , 2006, Brain : a journal of neurology.

[99]  M. Witter Organization of the entorhinal—hippocampal system: A review of current anatomical data , 1993, Hippocampus.

[100]  D. Collins,et al.  Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space , 1994, Journal of computer assisted tomography.

[101]  Alan C. Evans,et al.  Detecting changes in nonisotropic images , 1999, Human brain mapping.

[102]  Alan C. Evans,et al.  Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI , 2006, NeuroImage.

[103]  T. Morioka,et al.  Temporal lobe epilepsy: a clinicopathological study with special reference to temporal neocortical changes , 2000, Neurosurgical Review.

[104]  F. Mauguière,et al.  Temporopolar changes in temporal lobe epilepsy: A quantitative MRI-based study , 2002, Neurology.

[105]  Mary E. Meyerand,et al.  Voxel-based morphometry of unilateral temporal lobe epilepsy reveals abnormalities in cerebral white matter , 2004, NeuroImage.

[106]  Arthur W. Toga,et al.  A Probabilistic Atlas of the Human Brain: Theory and Rationale for Its Development The International Consortium for Brain Mapping (ICBM) , 1995, NeuroImage.

[107]  F Andermann,et al.  Entorhinal cortex atrophy in epilepsy patients exhibiting normal hippocampal volumes , 2001, Neurology.

[108]  D. Pandya,et al.  Efferent connections of the cingulate gyrus in the rhesus monkey , 1981, Experimental Brain Research.

[109]  S A Deadwyler,et al.  Neuronal Hypertrophy in the Neocortex of Patients with Temporal Lobe Epilepsy , 2001, The Journal of Neuroscience.

[110]  Paul Maguire,et al.  Thalamic glucose metabolism in temporal lobe epilepsy measured with 18F-FDG positron emission tomography (PET) , 1997, Epilepsy Research.

[111]  Astrid Nehlig,et al.  Predictive Value of Cortical Injury for the Development of Temporal Lobe Epilepsy in 21‐day‐old Rats: An MRI Approach Using the Lithium‐pilocarpine Model , 2002, Epilepsia.

[112]  Neda Bernasconi,et al.  MRI volumetry of the thalamus in temporal, extratemporal, and idiopathic generalized epilepsy , 2003, Neurology.

[113]  D. Louis Collins,et al.  Whole-brain voxel-based statistical analysis of gray matter and white matter in temporal lobe epilepsy , 2004, NeuroImage.

[114]  E. Serafetinides,et al.  ETIOLOGY AND PATHOGENESIS OF TEMPORAL LOBE EPILEPSY. , 1964, Archives of neurology.

[115]  Eric Halgren,et al.  Regional neocortical thinning in mesial temporal lobe epilepsy , 2008, Epilepsia.

[116]  Chris Rorden,et al.  Voxel-based morphometry of the thalamus in patients with refractory medial temporal lobe epilepsy , 2005, NeuroImage.

[117]  R. Spreafico,et al.  Alterations of the neocortical GABAergic system in the pilocarpine model of temporal lobe epilepsy: Neuronal damage and immunocytochemical changes in chronic epileptic rats , 2002, Brain Research Bulletin.

[118]  Jason Lerch,et al.  Native-Space Cortical Thickness Measurement And The Absence of Correlation to Cerebral Volume , 2005 .

[119]  Karl J. Friston,et al.  Why Voxel-Based Morphometry Should Be Used , 2001, NeuroImage.

[120]  H. Wieser,et al.  Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis , 2004 .

[121]  T. Sejnowski,et al.  A universal scaling law between gray matter and white matter of cerebral cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[122]  Alan C. Evans,et al.  A novel quantitative cross-validation of different cortical surface reconstruction algorithms using MRI phantom , 2006, NeuroImage.