Optimal quadrature rules for odd-degree spline spaces and their application to tensor-product-based isogeometric analysis

Abstract We introduce optimal quadrature rules for spline spaces that are frequently used in Galerkin discretizations to build mass and stiffness matrices. Using the homotopy continuation concept (Bartoň and Calo, 2016) that transforms optimal quadrature rules from source spaces to target spaces, we derive optimal rules for splines defined on finite domains. Starting with the classical Gaussian quadrature for polynomials, which is an optimal rule for a discontinuous odd-degree space, we derive rules for target spaces of higher continuity. We further show how the homotopy methodology handles cases where the source and target rules require different numbers of optimal quadrature points. We demonstrate it by deriving optimal rules for various odd-degree spline spaces, particularly with non-uniform knot sequences and non-uniform multiplicities. We also discuss convergence of our rules to their asymptotic counterparts, that is, the analogues of the midpoint rule of Hughes et al. (2010), that are exact and optimal for infinite domains. For spaces of low continuities, we numerically show that the derived rules quickly converge to their asymptotic counterparts as the weights and nodes of a few boundary elements differ from the asymptotic values.

[1]  W. Wall,et al.  Isogeometric structural shape optimization , 2008 .

[2]  Victor M. Calo,et al.  Fast isogeometric solvers for explicit dynamics , 2014 .

[3]  Peter Wriggers,et al.  Contact treatment in isogeometric analysis with NURBS , 2011 .

[4]  Sophia Blau,et al.  Analysis Of The Finite Element Method , 2016 .

[5]  John A. Evans,et al.  Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .

[6]  A. Morgan,et al.  Numerical Continuation Methods for Solving Polynomial Systems Arising in Kinematics , 1990 .

[7]  Lisandro Dalcin,et al.  PetIGA: High-Performance Isogeometric Analysis , 2013, ArXiv.

[8]  Gershon Elber,et al.  Geometric constraint solver using multivariate rational spline functions , 2001, SMA '01.

[9]  Victor M. Calo,et al.  Phase Field Modeling Using PetIGA , 2013, ICCS.

[10]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[11]  Nicholas M. Patrikalakis,et al.  Computation of the solutions of nonlinear polynomial systems , 1993, Comput. Aided Geom. Des..

[12]  Rachid Ait-Haddou,et al.  Explicit Gaussian quadrature rules for cubic splines with non-uniform knot sequences , 2014, 1410.7196.

[13]  T. Hughes,et al.  Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations , 2010 .

[14]  Gershon Elber,et al.  Global solutions of well-constrained transcendental systems using expression trees and a single solution test , 2012, Comput. Aided Geom. Des..

[15]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[16]  T. Hughes,et al.  ISOGEOMETRIC COLLOCATION METHODS , 2010 .

[17]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[18]  Eh Tan,et al.  DynEarthSol2D: An efficient unstructured finite element method to study long‐term tectonic deformation , 2013 .

[19]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[20]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[21]  Victor M. Calo,et al.  Multiphysics model for blood flow and drug transport with application to patient-specific coronary artery flow , 2008 .

[22]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[23]  Mehdi Ghommem,et al.  On the shape optimization of flapping wings and their performance analysis , 2012, 1211.2583.

[24]  Geno Nikolov On certain definite quadrature formulae , 1996 .

[25]  C. D. Boor,et al.  On Calculating B-splines , 1972 .

[26]  Josef Hoschek,et al.  Handbook of Computer Aided Geometric Design , 2002 .

[27]  Victor M. Calo,et al.  On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers , 2014 .

[28]  V. M. Calo,et al.  Simulation of Engineering Applications Using Isogeometric Analysis , 2008 .

[29]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[30]  Victor M. Calo,et al.  Performance evaluation of block-diagonal preconditioners for the divergence-conforming B-spline discretization of the Stokes system , 2015, J. Comput. Sci..

[31]  I. J. Schoenberg Spline functions, convex curves and mechanical quadrature , 1958 .

[32]  Victor M. Calo,et al.  A finite strain Eulerian formulation for compressible and nearly incompressible hyperelasticity using high‐order B‐spline finite elements , 2012 .

[33]  Victor M. Calo,et al.  Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows , 2007 .

[34]  Victor M. Calo,et al.  Coupling Navier-stokes and Cahn-hilliard Equations in a Two-dimensional Annular flow Configuration , 2015, ICCS.

[35]  T. Hughes,et al.  Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes , 2010 .

[36]  Charles A. Micchelli,et al.  The Fundamental Theorem of Algebra for Monosplines with Multiplicities , 1972 .

[37]  G. Szegö,et al.  Inequalities for the zeros of Legendre polynomials and related functions , 1936 .

[38]  Gershon Elber,et al.  Geometric modeling with splines - an introduction , 2001 .

[39]  Walter Gautschi,et al.  Numerical Analysis , 1978, Mathemagics: A Magical Journey Through Advanced Mathematics.

[40]  Charles A. Micchelli,et al.  Moment Theory for Weak Chebyshev Systems with Applications to Monosplines, Quadrature Formulae and Best One-Sided $L^1 $-Approximation by Spline Functions with Fixed Knots , 1977 .

[41]  L. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communications.

[42]  T. Hughes,et al.  A Simple Algorithm for Obtaining Nearly Optimal Quadrature Rules for NURBS-based Isogeometric Analysis , 2012 .

[43]  Yuri Bazilevs,et al.  High-performance computing of wind turbine aerodynamics using isogeometric analysis , 2011 .

[44]  T. Hughes,et al.  B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements , 2008 .

[45]  Victor M. Calo,et al.  Isogeometric Variational Multiscale Large-Eddy Simulation of Fully-developed Turbulent Flow over a Wavy Wall , 2012 .

[46]  Mehdi Ghommem,et al.  Isogeometric shell formulation based on a classical shell model , 2012 .

[47]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[48]  Andrew J. Sommese,et al.  The numerical solution of systems of polynomials - arising in engineering and science , 2005 .

[49]  Victor M. Calo,et al.  Simulation of laminar and turbulent concentric pipe flows with the isogeometric variational multiscale method , 2013 .

[50]  Rachid Ait-Haddou,et al.  Explicit Gaussian quadrature rules for C1 cubic splines with symmetrically stretched knot sequences , 2015, J. Comput. Appl. Math..

[51]  Rachid Ait-Haddou,et al.  Gaussian quadrature rules for $C^1$ quintic splines , 2015 .

[52]  Victor M. Calo,et al.  Gaussian quadrature for splines via homotopy continuation: Rules for C2 cubic splines , 2016, J. Comput. Appl. Math..