Shell Structure of Confined Charges at Strong Coupling

A theoretical description of shell structure for charged particles in a harmonic trap is explored at strong coupling conditions of Γ = 50 and 100. The theory is based on an extension of the hypernetted chain approximation to confined systems plus a phenomenological representation of associated bridge functions. Predictions are compared to corresponding Monte Carlo simulations and quantitative agreement for the radial density profile is obtained (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  M. Bonitz,et al.  Theoretical description of Coulomb balls: fluid phase. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  J. Cioslowski,et al.  Parameter-free shell model of spherical Coulomb crystals. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  D. Asmus,et al.  Ground states of finite spherical Yukawa crystals , 2008, 0805.4617.

[4]  M. Bonitz,et al.  Shell Structure of Yukawa Balls , 2007 .

[5]  H. Fehske,et al.  Screened Coulomb balls : structural properties and melting behaviour , 2006 .

[6]  M. Bonitz,et al.  Thermodynamics of a correlated confined plasma II. Mesoscopic system , 2006 .

[7]  A. Piel,et al.  Structural properties of screened Coulomb balls. , 2005, Physical review letters.

[8]  M. Bonitz,et al.  Structure of spherical three-dimensional Coulomb crystals. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  H. Fehske,et al.  3D Coulomb balls: experiment and simulation , 2005 .

[10]  A. Piel,et al.  Dust Coulomb balls: three-dimensional plasma crystals. , 2004, Physical review letters.

[11]  T. Pattard,et al.  Coulomb crystallization in expanding laser-cooled neutral plasmas. , 2003, Physical review letters.

[12]  J. Schiffer Melting of crystalline confined plasmas. , 2002, Physical review letters.

[13]  D. Henderson Fundamentals of Inhomogeneous Fluids , 1992 .

[14]  Neil W. Ashcroft,et al.  Theory of simple classical fluids: Universality in the short-range structure , 1979 .

[15]  K. Ng Hypernetted chain solutions for the classical one‐component plasma up to Γ=7000 , 1974 .

[16]  E. P. Ferreira,et al.  The interactions of π - -mesons with complex nuclei in the energy range (100–800) MeV. III. The interaction lengths and elastic scattering of 300 MeV π - -mesons in G5 emulsion , 1959 .