Bacterial Pu(V) reduction in the absence and presence of Fe(III)–NTA: modeling and experimental approach

[1]  M. Moo-young,et al.  Environmental Biotechnology: Principles and Applications , 2010 .

[2]  B. Rittmann,et al.  Subsurface Interactions of Actinide Species with Microorganisms , 2010 .

[3]  J. Lloyd,et al.  Impact of the Fe(III)-reducing bacteria Geobacter sulfurreducens and Shewanella oneidensis on the speciation of plutonium , 2009 .

[4]  H. Boukhalfa,et al.  Plutonium(V/VI) Reduction by the Metal-Reducing Bacteria Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1 , 2007, Applied and Environmental Microbiology.

[5]  B. Salbu,et al.  Speciation of radionuclides in the environment. , 2006, Journal of environmental radioactivity.

[6]  A. Francis,et al.  Bioreduction of uranium(VI) complexed with citric acid by Clostridia affects its structure and solubility. , 2008, Environmental science & technology.

[7]  A. Francis,et al.  Reductive dissolution of Pu(IV) by Clostridium sp. under anaerobic conditions. , 2008, Environmental science & technology.

[8]  A. Francis Microbial mobilization and immobilization of plutonium , 2007 .

[9]  S. E. Pepper,et al.  Subsurface bio-mediated reduction of higher-valent uranium and plutonium , 2007 .

[10]  A. J. Kropf,et al.  Reduction of plutonium(VI) in brine under subsurface conditions , 2006 .

[11]  H. Boukhalfa,et al.  Plutonium speciation affected by environmental bacteria , 2006 .

[12]  J. Vanbriesen,et al.  Modeling speciation effects on biodegradation in mixed metal/chelate systems , 1999, Biodegradation.

[13]  B. Rittmann,et al.  Reduction of Np(V) and precipitation of Np(IV) by an anaerobic microbial consortium , 2004, Biodegradation.

[14]  J. Vanbriesen,et al.  Mathematical modeling of precipitationand dissolution reactions in microbiological systems , 2004, Biodegradation.

[15]  Robert M. Smith,et al.  NIST standard reference database 46 version 8.0: NIST critically selected stability constants of metal complexes , 2004 .

[16]  Robert M. Smith,et al.  NIST Critically Selected Stability Constants of Metal Complexes Database , 2004 .

[17]  G. Choppin Actinide speciation in the environment , 2007 .

[18]  R. Cowan,et al.  A kinetic model for bacterial Fe(III) oxide reduction in batch cultures , 2003 .

[19]  Chongxuan Liu,et al.  Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria. , 2002, Biotechnology and bioengineering.

[20]  J. Fredrickson,et al.  Reductive Dissolution of PuO2(am): The Effect of Fe(II) and Hydroquinone , 2002 .

[21]  J. Haas,et al.  Effects of Fe(III) chemical speciation on dissimilatory Fe(III) reduction by Shewanella putrefaciens. , 2002, Environmental science & technology.

[22]  B. Rittmann,et al.  Bio-sorption of neptunium(V) by Pseudomonas fluorescens , 2002 .

[23]  J. Vanbriesen,et al.  Modeling biogeochemical interactions in co-contaminant systems , 2000 .

[24]  J. Vanbriesen,et al.  Mathematical description of microbiological reactions involving intermediates. , 2000, Biotechnology and bioengineering.

[25]  W. D. Bostick,et al.  Uranium Removal from Ground Water Using Zero Valent Iron Media , 1999 .

[26]  B. Rittmann,et al.  Subsurface interactions of actinide species and microorganisms: Implications for the bioremediation of actinide-organic mixtures , 1999 .

[27]  B. Rittmann,et al.  Fate of neptunium in an anaerobic, methanogenic microcosm. , 1999 .

[28]  B. Rittmann,et al.  Speciation-dependent toxicity of Neptunium(V) toward Chelatobacter heintzii , 1998 .

[29]  N. Valentine,et al.  Kinetics of U(VI) reduction by a dissimilatory Fe(III)-reducing bacterium under non-growth conditions. , 1997, Biotechnology and bioengineering.

[30]  J. Costerton,et al.  Morphological and metabolic responses to starvation by the dissimilatory metal-reducing bacterium Shewanella alga BrY , 1996, Applied and environmental microbiology.

[31]  J. Brainard,et al.  Solubilization of plutonium hydrous oxide by iron-reducing bacteria. , 1994, Environmental science & technology.

[32]  D. Lovley,et al.  Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris , 1993, Applied and environmental microbiology.

[33]  D. Lovley,et al.  Dissimilatory metal reduction. , 1993, Annual review of microbiology.

[34]  R. Blakemore,et al.  A Hydrogen-Oxidizing, Fe(III)-Reducing Microorganism from the Great Bay Estuary, New Hampshire , 1992, Applied and environmental microbiology.

[35]  Derek R. Lovley,et al.  Enzymic uranium precipitation , 1992 .

[36]  J. M. Cleveland,et al.  Characterization of plutonium in maxey flats radioactive trench leachates. , 1981, Science.