Effects of the lanthanide addition to the Sr 2 Cr Re O 6 double perovskite

We have studied the effects of Sr replacement by different lanthanides in ${\mathrm{Sr}}_{2}\mathrm{Cr}\mathrm{Re}{\mathrm{O}}_{6}$. Our attempts at electron doping of ${\mathrm{Sr}}_{2}\mathrm{Cr}\mathrm{Re}{\mathrm{O}}_{6}$ led to multiphasic systems. Single phases are only obtained with the stoichiometric formula ${\mathrm{Sr}}_{2\ensuremath{-}x}{\mathrm{Ln}}_{x}{\mathrm{Cr}}_{1+x∕2}{\mathrm{Re}}_{1\ensuremath{-}x∕2}{\mathrm{O}}_{6}$. We have studied the properties of these compounds with $x\ensuremath{\leqslant}0.5$ and $\mathrm{Ln}=\mathrm{La}$, Nd, or Sm. All of these samples crystallize in a face-centered cubic cell, which shrinks as Ln-size decreases. The distribution of Re and Cr atoms has been solved using x-ray diffraction. The samples show spontaneous magnetization at room temperature with large coercive fields. The Ln addition slightly affects the Curie temperature although the saturated magnetic moment decreases, owing to the increase of antisite defects. We have also studied ${\mathrm{Sr}}_{2\ensuremath{-}x}{\mathrm{Nd}}_{x}{\mathrm{Cr}}_{1+x∕2}{\mathrm{Re}}_{1\ensuremath{-}x∕2}{\mathrm{O}}_{6}$ and ${\mathrm{Sr}}_{2\ensuremath{-}x}{\mathrm{Sm}}_{x}{\mathrm{Cr}}_{1+x∕2}{\mathrm{Re}}_{1\ensuremath{-}x∕2}{\mathrm{O}}_{6}$ $(x\ensuremath{\leqslant}0.5)$ by means of x-ray absorption spectroscopy. The spectra at the $\mathrm{Cr}\phantom{\rule{0.2em}{0ex}}K$ edge agree with the presence of ${\mathrm{Cr}}^{3+}$ for all compounds although changes with increasing the rare-earth content are visible at the preedge features. These changes suggest a change in the Cr-O covalency of the samples with increasing Ln content. Measurements at the $\mathrm{Re}\phantom{\rule{0.2em}{0ex}}{L}_{1,2,3}$ edges reveal the presence of ${\mathrm{Re}}^{5+}$ in all compounds. This implies that replacing Sr by Ln does not affect the electronic state of both ${\mathrm{Cr}}^{3+}$ and ${\mathrm{Re}}^{5+}$.

[1]  Javier Blasco,et al.  Steric effects and electron doping in Sr2CrReO6 double-perovskite oxides , 2007 .

[2]  J. Freudenberger,et al.  High-field magnetization measurements in Sr2CrReO6 double perovskite: Evidence for orbital contribution to the magnetization , 2007 .

[3]  M. Jansen,et al.  Sr2CrOsO6 : End point of a spin-polarized metal-insulator transition by 5d band filling , 2007 .

[4]  M. Ibarra,et al.  Double perovskites with ferromagnetism above room temperature , 2007 .

[5]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[6]  G. Subías,et al.  EXAFS spectroscopic analysis of the Verwey transition inFe3O4. , 2005 .

[7]  A. Marcelli,et al.  Quadrupolar transitions and medium-range-order effects in metal K-edge x-ray absorption spectra of 3d transition-metal compounds , 2004 .

[8]  Luis Morellón,et al.  Increase of Curie temperature in fixed ionic radius Ba$_\mathsf{1 + x}$Sr $_\mathsf{1-3x}$La$_\mathsf{2x}$FeMoO$_\mathsf{6}$ double perovskites , 2004 .

[9]  A. Berry,et al.  A XANES determination of the oxidation state of chromium in silicate glasses , 2004 .

[10]  J. García,et al.  Cooperative Jahn-Teller phase transition in LaMnO3 studied by X-ray absorption spectroscopy. , 2003, Physical review letters.

[11]  Martha Greenblatt,et al.  Large effects of A -site average cation size on the properties of the double perovskites Ba 2 − x Sr x MnReO 6 : A d 5 − d 1 system , 2003 .

[12]  Y. Okimoto,et al.  Metallic ordered double-perovskite Sr2CrReO6 with maximal Curie temperature of 635 K , 2002 .

[13]  Manuel Ricardo Ibarra,et al.  Large low-field magnetoresistance and TC in polycrystalline (Ba0.8Sr0.2)2-xLaxFeMoO6 double perovskites , 2002 .

[14]  M. Ibarra,et al.  Structural, magnetic and transport properties of Sr2Fe1−xCrxMoO6−y , 2002 .

[15]  J. García,et al.  Local electronic and geometrical structure of LaNi 1-x Mn x O 3+δ perovskites determined by x-ray-absorption spectroscopy , 2002 .

[16]  Ll. Balcells,et al.  Raising the Curie temperature in Sr2FeMoO6 double perovskites by electron doping , 2001 .

[17]  M. Croft,et al.  Large magnetoresistance in double perovskite Sr2Cr1.2Mo0.8O6-δ , 2001 .

[18]  J. Rehr,et al.  Theoretical approaches to x-ray absorption fine structure , 2000 .

[19]  J. Itié,et al.  An experimental station for advanced research on condensed matter under extreme conditions at the European Synchrotron Radiation Facility - BM29 beamline , 2000 .

[20]  S. Ebbinghaus,et al.  Multiplet effects in the Ru L2,3 x-ray-absorption spectra of Ru (IV) and Ru (V) compounds , 2000 .

[21]  V. Pomjakushin,et al.  Preparation, Structure, and Magnetic Studies of a New Sr11Re4O24 Double Oxide , 2000 .

[22]  H. Renevier,et al.  ELECTRON POPULATION ANALYSIS BY FULL-POTENTIAL X-RAY ABSORPTION SIMULATIONS , 1999 .

[23]  K.-I. Kobayashi,et al.  Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure , 1998, Nature.

[24]  Naoki Kobayashi,et al.  Continuous excitation of planetary free oscillations by atmospheric disturbances , 1998, Nature.

[25]  J. Rehr,et al.  TI K-EDGE XANES STUDIES OF TI COORDINATION AND DISORDER IN OXIDE COMPOUNDS: COMPARISON BETWEEN THEORY AND EXPERIMENT , 1997 .

[26]  K. Hodgson,et al.  A Multiplet Analysis of Fe K-Edge 1s → 3d Pre-Edge Features of Iron Complexes , 1997 .

[27]  P. Woodward Octahedral Tilting in Perovskites. I. Geometrical Considerations , 1997 .

[28]  J. Purans,et al.  A high-temperature x-ray absorption spectroscopy study of , 1996 .

[29]  Jin-Ho Choy,et al.  XANES and EXAFS Studies on the Ir-O Bond Covalency in Ionic Iridium Perovskites , 1995 .

[30]  Y. Takeda,et al.  Relationship between the Electrical Properties and Crystal Structure of (La1-xNdx)CrO3 (0 ≤ x ≤ 1.0) , 1995 .

[31]  B. Weckhuysen,et al.  COMBINED DRS-RS-EXAFS-XANES-TPR STUDY OF SUPPORTED CHROMIUM CATALYSTS , 1995 .

[32]  Zhiwei Hu,et al.  Differences between L3 and L2 x‐ray absorption spectra of transition metal compounds , 1994 .

[33]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .

[34]  A. Manceau,et al.  Structural chemistry of Mn, Fe, Co, and Ni in manganese hydrous oxides; Part I, information from XANES spectroscopy , 1992 .

[35]  C. Brouder Angular dependence of X-ray absorption spectra , 1990 .

[36]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[37]  J. S. Stephens,et al.  The crystal structure of (CrO3) , 1970 .

[38]  A. Magnéli Orthorhombic rhenium dioxide: a representative of a hypothetic structure type predicted by Pauling & Sturdivant , 1956 .