Coronal streamers in the solar wind at 1 AU

Abstract : Examination of solar wind plasma data obtained by the Los Alamos experiments on Imp 6, 7, and 8 during the 1971-1978 interval has revealed a frequent association between minimums in helium abundance and maximums in proton density. These events occur at low flow speeds and are strongly correlated with polarity reversals in the interplanetary magnetic field. A large fraction of these high proton density-low helium abundance events are examples of noncompressive density enhancements (NCDE), i.e., large positive density signals not readily associated with stream-stream interactions. The cleanest examples of these events often occur at well defined sector boundaries; complex, multiple events with 2 or more peaks in proton density and lasting approximately 3-7 days are, however, common, and are associated with multiple field polarity reversals. When mapped back to the sun, assuming constant speed along a stream tube, these high proton density-low helium abundance events associated with magnetic field reversals usually correspond to intersections of the spacecraft trajectory with the mid line of a coronal streamer belt that encircles the sun. The duration or multiplicity of these 1 AU events is generally correlated with the local tilt of the middle of the streamer belt to the solar equator. These events thus appear to be the 1 AU extensions of coronal streamers. A fine scale warping of the streamer belt on a longitudinal scale of approximately 10 deg and varying thickness and density of the streamer belt at 1 AU adequately account for the variety of low helium abundance-high proton density events observed. It is not yet understood which the helium abundance is low within coronal streamers at 1 AU.

[1]  J. Asbridge,et al.  Velocity and flux dependence of the solar-wind helium abundance. , 1972 .

[2]  L. Davis,et al.  Large-Amplitude Alfvn Waves in the Interplanetary Medium' , 1971 .

[3]  W. Feldman,et al.  Plasma and Magnetic Fields from the Sun , 1977 .

[4]  W. Feldman,et al.  Solar wind stream interfaces , 1978 .

[5]  W. Feldman,et al.  Double ion streams in the solar wind , 1973 .

[6]  R. Hansen,et al.  Brightness variations of the white light corona during the years 1964–67 , 1969 .

[7]  W. Feldman,et al.  Helium and hydrogen velocity differences in the solar wind , 1976 .

[8]  N. P. Korzhov Large-scale three-dimensional structure of the interplanetary magnetic field , 1977 .

[9]  W. Feldman,et al.  Solar wind helium and hydrogen structure near the heliospheric current sheet: A signal of coronal streamers at 1 AU , 1981 .

[10]  W. Feldman,et al.  Solar wind speed variations: 1962–1974 , 1976 .

[11]  G. Noci,et al.  Dynamics and abundance of ions in coronal holes , 1979 .

[12]  J. T. Hoeksema,et al.  Origin of the Warped Heliospheric Current Sheet , 1980, Science.

[13]  J. Wilcox,et al.  Quasi‐stationary corotating structure in the interplanetary medium , 1965 .

[14]  E. Roelof,et al.  A coronal hole and its identification as the source of a high velocity solar wind stream , 1973 .

[15]  P. McIntosh,et al.  Solar magnetic fields derived from hydrogen alpha filtergrams , 1972 .

[16]  K. Ogilvie,et al.  The solar cycle variation of the solar wind helium abundance , 1974 .

[17]  J. King Interplanetary medium data book , 1977 .

[18]  A. Hundhausen Nonlinear model of high‐speed solar wind streams , 1973 .

[19]  M. Nakada A study of the composition of the lower solar corona , 1969 .

[20]  A. Hundhausen An interplanetary view of coronal holes. , 1977 .

[21]  C. Sawyer,et al.  K corona and magnetic sector boundaries , 1974 .

[22]  L. Burlaga,et al.  The shape and location of the sector boundary surface in the inner solar system. [Helios observations] , 1979 .

[23]  Conway W. Snyder,et al.  MARINER 2 OBSERVATIONS OF THE SOLAR WIND. 1. AVERAGE PROPERTIES , 1966 .

[24]  P. Coleman,et al.  Solar cycle‐dependent north‐south field configurations observed in solar wind interaction regions , 1980 .

[25]  C. Sawyer,et al.  Long-lived coronal structures and recurrent geomagnetic patterns in 1974 , 1976 .

[26]  A. Hundhausen,et al.  Helium in the solar wind , 1970 .

[27]  J. Asbridge Compressions and Rarefactions in the Solar Wind' Vela 3 J. T. GosLInG, A. J. HUN)HAUSEN, AND V. Pzzo , 1972 .

[28]  A. Hundhausen,et al.  Coronal evolution during the sunspot cycle: Coronal holes observed with the Mauna Loa K‐Coronameters , 1981 .

[29]  W. Feldman,et al.  Noncompressive density enhancements in the solar wind , 1977 .

[30]  W. Feldman,et al.  Evidence for a structure‐free state at high solar wind speeds , 1977 .

[31]  T. Wilkerson,et al.  Helium abundance in the solar wind , 1969 .

[32]  A. G. Fenton,et al.  The neutron flux at balloon altitudes during a solar proton event , 1970 .

[33]  J. Geiss,et al.  On acceleration and motion of ions in corona and solar wind , 1970 .

[34]  S. Bame Spacecraft Observations of the Solar Wind Composition , 1972 .

[35]  V. Formisano,et al.  HEOS 1 helium observations in the solar wind , 1972 .

[36]  E. Roelof,et al.  Large-scale structure of the interplanetary medium , 1973, Solar Physics.

[37]  W. Feldman,et al.  High‐speed solar wind flow parameters at 1 AU , 1976 .

[38]  E. Roelof,et al.  Large-scale structure of the interplanetary medium , 1973 .

[39]  M. Neugebauer Observations of solar-wind helium , 1981 .

[40]  R. Hansen,et al.  On the reality of potential magnetic fields in the solar corona , 1978 .

[41]  J. Wilcox,et al.  A model combining the polar and the sector structured solar magnetic fields , 1974 .

[42]  W. Feldman,et al.  Long-term variations of selected solar wind properties - IMP 6, 7, and 8 results , 1978 .

[43]  H. Rosenbauer,et al.  A Survey on Initial Results of the Helios Plasma Experiment , 1977 .

[44]  E. Fenimore Solar wind flows associated with hot heavy ions , 1980 .

[45]  T. Holzer,et al.  A steady three‐fluid coronal expansion for nonspherical geometries , 1978 .

[46]  G. Siscoe,et al.  Corotating structure in the solar wind , 1969 .

[47]  R. Howard,et al.  Observation of sectored structure in the outer solar corona: Correlation with interplanetary magnetic field , 1974 .

[48]  R. Hansen,et al.  Differential rotation of the solar electron corona , 1969 .

[49]  A. Hundhausen,et al.  Coronal Expansion and Solar Wind , 1972 .

[50]  E. Fenimore,et al.  The solar origins of solar wind interstream flows: Near‐equatorial coronal streamers , 1981 .

[51]  M. Schulz Interplanetary sector structure and the helliomagnetic equator , 1973 .

[52]  G. Newkirk Structure of the Solar Corona , 1967 .

[53]  B. Tsurutani,et al.  Observations of the interplanetary sector structure up to heliographic latitudes of 16°: Pioneer 11 , 1978 .

[54]  G. Pneuman The solar wind and the temperature-density structure of the solar corona , 1973 .

[55]  J. Asbridge,et al.  The helium component of solar wind velocity streams , 1974 .

[56]  L. Burlaga,et al.  Interplanetary sector boundaries 1971–1973 , 1979 .

[57]  S. Bame,et al.  Solar flares and solar wind helium enrichments: July 1965–July 1967 , 1972 .

[58]  J. R. Jokipii Effects of diffusion on the composition of the solar corona and the solar wind , 1966 .

[59]  G. Wlérick,et al.  A new instrument for observing the electron corona (Astrophysical Journal 1957) , 1957 .

[60]  R. Kopp,et al.  Gas-magnetic field interactions in the solar corona , 1971 .