Resonance and radical embodiment

One big challenge faced by cognitive science is the development of a unified theory that integrates disparate scales of analysis of cognitive phenomena. In this paper, I offer a unified framework that provides a way to integrate neural and behavioral scales of analysis of cognitive phenomena—typically addressed by neuroscience and experimental psychology, respectively. The framework is based on the concept of resonance originated in ecological psychology and aims to be the foundation for a unified theory for radical embodiment; that is, a unified theory for that dissident part of cognitive science that shares a methodological commitment to dynamic systems theory and remains skeptical about the adequacy of mechanism and representationalism as the guiding ideas in the field. In the course of my presentation, I analyze different issues regarding the requirements and constraints unification poses to radical embodiment.

[1]  Margaret Morrison,et al.  Unifying Scientific Theories by Margaret Morrison , 2000 .

[2]  Randall D. Beer,et al.  The Dynamics of Active Categorical Perception in an Evolved Model Agent , 2003, Adapt. Behav..

[3]  Michael T. Turvey,et al.  Concurrent Cognitive Task Modulates Coordination Dynamics , 2005, Cogn. Sci..

[4]  J. Kelso,et al.  The Metastable Brain , 2014, Neuron.

[5]  Richard Wilkie,et al.  Controlling steering and judging heading: retinal flow, visual direction, and extraretinal information. , 2003, Journal of experimental psychology. Human perception and performance.

[6]  J. Kelso,et al.  Attentional demands reflect learning‐induced alterations of bimanual coordination dynamics , 2002, The European journal of neuroscience.

[7]  David N. Lee General Tau Theory: evolution to date. , 2009, Perception.

[8]  Nicholas Shea,et al.  VI—Exploitable Isomorphism and Structural Representation , 2014 .

[9]  C. Hempel,et al.  Studies in the Logic of Explanation , 1948, Philosophy of Science.

[10]  Kiara F. Bruggeman,et al.  How to build a brain , 2014 .

[11]  T. Gelder,et al.  The dynamical hypothesis in cognitive science , 1998, Behavioral and Brain Sciences.

[12]  Michael L. Anderson,et al.  Behavior Considered as an Enabling Constraint , 2020 .

[13]  Patrick Nalepka,et al.  Human social motor solutions for human–machine interaction in dynamical task contexts , 2019, Proceedings of the National Academy of Sciences.

[14]  Brett R. Fajen,et al.  From optic flow to laws of control , 2004 .

[15]  Anthony Chemero,et al.  Route selection and obstacle avoidance with a short-range haptic sensory substitution device✰ , 2019, Int. J. Hum. Comput. Stud..

[16]  Peter Maurer,et al.  Unifying Scientific Theories Physical Concepts And Mathematical Structures , 2016 .

[17]  Richard Reviewer-Granger Unified Theories of Cognition , 1991, Journal of Cognitive Neuroscience.

[18]  John R. Anderson How Can the Human Mind Occur in the Physical Universe , 2007 .

[19]  Clarissa Ferrari,et al.  What you see is what you get: motor resonance in peripheral vision , 2015, Experimental Brain Research.

[20]  Daniel C. Dennett,et al.  Brainstorms: Philosophical Essays on Mind and Psychology , 1981 .

[21]  Lea Fleischer,et al.  The Senses Considered As Perceptual Systems , 2016 .

[22]  A. Noë,et al.  A sensorimotor account of vision and visual consciousness. , 2001, The Behavioral and brain sciences.

[23]  S. Bressler,et al.  Operational principles of neurocognitive networks. , 2006, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[24]  Andrew D. Wilson,et al.  Identifying the information for the visual perception of relative phase , 2008, Perception & psychophysics.

[25]  Eugene M. Izhikevich,et al.  Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting , 2006 .

[26]  John Symons,et al.  The Routledge Companion to Philosophy of Psychology , 2009 .

[27]  G. V. van Orden,et al.  Self-organization of cognitive performance. , 2003, Journal of experimental psychology. General.

[28]  S. Runeson On the possibility of "smart" perceptual mechanisms. , 1977, Scandinavian journal of psychology.

[29]  Manuel Heras-Escribano,et al.  Ecological psychology is radical enough: A reply to radical enactivists , 2019, Philosophical Psychology.

[30]  O. G. Meijer,et al.  Making thinks happen: An introduction to the history of movement science , 2001 .

[31]  N. Shea Exploitable Isomorphism and Structural Representation , 2014 .

[32]  Manuel Glez Bedia,et al.  The situated HKB model: how sensorimotor spatial coupling can alter oscillatory brain dynamics , 2013, Front. Comput. Neurosci..

[33]  William Bechtel,et al.  Constructing a Philosophy of Science of Cognitive Science , 2009, Top. Cogn. Sci..

[34]  William H. Warren,et al.  Integrating target interception and obstacle avoidance , 2010 .

[35]  John McCarthy,et al.  SOME PHILOSOPHICAL PROBLEMS FROM THE STANDPOINT OF ARTI CIAL INTELLIGENCE , 1987 .

[36]  M. Turvey,et al.  Ecological laws of perceiving and acting: In reply to Fodor and Pylyshyn (1981) , 1981, Cognition.

[37]  Joel Walmsley,et al.  Explanation in Dynamical Cognitive Science , 2008, Minds and Machines.

[38]  Karl J. Friston The free-energy principle: a unified brain theory? , 2010, Nature Reviews Neuroscience.

[39]  M. A. MacIver,et al.  Neuroscience Needs Behavior: Correcting a Reductionist Bias , 2017, Neuron.

[40]  Deborah J. Aks,et al.  1/f Dynamic in Complex Visual Search: Evidence for Self-Organized Criticality in Human Perception , 2004 .

[41]  Michael L. Anderson,et al.  Describing functional diversity of brain regions and brain networks , 2013, NeuroImage.

[42]  Geoffrey P. Bingham,et al.  A Perceptually Driven Dynamical Model of Bimanual Rhythmic Movement (and Phase Perception) , 2004 .

[43]  William Ramsey,et al.  Untangling two questions about mental representation , 2016 .

[44]  Mitsuo Kawato,et al.  Internal models for motor control and trajectory planning , 1999, Current Opinion in Neurobiology.

[45]  Clark Glymour,et al.  On Some Patterns of Reduction , 1970, Philosophy of Science.

[46]  Benjamin Naumann The Architecture Of Cognition , 2016 .

[47]  A. Chemero Radical Embodied Cognitive Science , 2009 .

[48]  Y. Yarom,et al.  Resonance, oscillation and the intrinsic frequency preferences of neurons , 2000, Trends in Neurosciences.

[49]  C. Craver Explaining the Brain: Mechanisms and the Mosaic Unity of Neuroscience , 2007 .

[50]  M T Turvey,et al.  A comment on equating information with symbol strings. , 1984, The American journal of physiology.

[51]  Michael T. Turvey,et al.  Ecological Psychology: Six Principles for an Embodied–Embedded Approach to Behavior , 2008 .

[52]  Edward Mackinnon Aspects of Scientific Explanation: and Other Essays in the Philosophy of Science , 1967 .

[53]  Rudolf Vetschera,et al.  Information representation in decision making: The impact of cognitive style and depletion effects , 2017, Decis. Support Syst..

[54]  Michael J. Richardson,et al.  Herd Those Sheep: Emergent Multiagent Coordination and Behavioral-Mode Switching , 2017, Psychological science.

[55]  Michael L. Anderson,et al.  Radical Embodied Cognitive Neuroscience , 2019, Ecological Psychology.

[56]  Xiao-Jing Wang Neurophysiological and computational principles of cortical rhythms in cognition. , 2010, Physiological reviews.

[57]  Stanley J. Rosenschein,et al.  A dynamical systems perspective on agent-environment interaction , 1996 .

[58]  Nicolette Ognjanovski,et al.  Resonance with subthreshold oscillatory drive organizes activity and optimizes learning in neural networks , 2018, Proceedings of the National Academy of Sciences.

[59]  E. Orekhova,et al.  Theta synchronization during sustained anticipatory attention in infants over the second half of the first year of life. , 1999, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[60]  M. Turvey Ecological foundations of cognition: Invariants of perception and action. , 1992 .

[61]  Jiang Wang,et al.  Effect of inhibitory firing pattern on coherence resonance in random neural networks , 2018 .

[62]  W. Singer,et al.  Neural Synchrony in Cortical Networks: History, Concept and Current Status , 2009, Front. Integr. Neurosci..

[63]  H. Haken,et al.  A theoretical model of phase transitions in human hand movements , 2004, Biological Cybernetics.

[64]  William Bechtel,et al.  Rethinking Causality in Biological and Neural Mechanisms: Constraints and Control , 2018, Minds and Machines.

[65]  E. Large Resonating to Musical Rhythm : Theory and Experiment , 2008 .

[66]  Vicente Raja,et al.  From metaphor to theory: the role of resonance in perceptual learning , 2019, Adapt. Behav..

[67]  Jianbo Gao,et al.  Fractal analyses: statistical and methodological innovations and best practices , 2013, Front. Physiol..

[68]  John R. Anderson The Architecture of Cognition , 1983 .

[69]  Andrew D. Wilson,et al.  Ecological Representations , 2018, bioRxiv.

[70]  Michael J. Richardson,et al.  Dynamics of Interpersonal Coordination , 2008 .

[71]  Michael Rescorla,et al.  Cognitive Maps and the Language of Thought , 2009, The British Journal for the Philosophy of Science.

[72]  S. Furber,et al.  To build a brain , 2012, IEEE Spectrum.

[73]  Chris Baber After phrenology: neural reuse and the interactive brain , 2017, Ergonomics.

[74]  Daniel D. Hutto,et al.  Radicalizing Enactivism: Basic Minds without Content , 2012 .

[75]  Robert F. Port,et al.  Meter and speech , 2003, J. Phonetics.

[76]  Viktor K. Jirsa,et al.  Connecting Cortical and Behavioral Dynamics: Bimanual Coordination , 1998, Neural Computation.

[77]  Gregor Schöner,et al.  Dynamic Thinking : A Primer on Dynamic Field Theory , 2015 .

[78]  W. Prinz,et al.  Perceptual basis of bimanual coordination , 2001, Nature.

[79]  Xabier E. Barandiaran,et al.  Sensorimotor Life: An enactive proposal , 2017 .

[80]  Tracy Brown,et al.  The Embodied Mind: Cognitive Science and Human Experience , 2002, Cybern. Hum. Knowing.

[81]  P. N. Kugler,et al.  Information, Natural Law, and the Self-Assembly of Rhythmic Movement , 2015 .

[82]  W. H. Warren,et al.  Behavioral dynamics of intercepting a moving target , 2007, Experimental Brain Research.

[83]  J. A. Scott Kelso,et al.  Multistability and metastability: understanding dynamic coordination in the brain , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[84]  Vicente Raja,et al.  A Theory of Resonance: Towards an Ecological Cognitive Architecture , 2018, Minds and Machines.

[85]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[86]  Peter Klopfer,et al.  The Ontogeny of Information , 2000 .

[87]  J. Kelso,et al.  Cortical coordination dynamics and cognition , 2001, Trends in Cognitive Sciences.

[88]  Karl M. Newell,et al.  Landscapes Beyond the HKB Model , 2008 .

[89]  D. LaBerge,et al.  Theory of Electric Resonance in the Neocortical Apical Dendrite , 2011, PloS one.

[90]  A. Chemero,et al.  Radical embodied cognitive science and “Real Cognition” , 2019, Synthese.

[91]  Geoffrey P. Bingham,et al.  Task-specific devices and the perceptual bottleneck☆ , 1988 .

[92]  M. Zochowski,et al.  Pattern segmentation with activity dependent natural frequency shift and sub-threshold resonance , 2015, Scientific Reports.

[93]  Andrew D. Wilson,et al.  Ecological mechanisms in cognitive science , 2019, Theory & Psychology.

[94]  J. Gibson The Ecological Approach to Visual Perception , 1979 .

[95]  John Symons,et al.  The Routledge Companion to Philosophy of Psychology , 2009 .

[96]  Margaret Morrison Unifying Scientific Theories: Index , 2000 .

[97]  M. Miłkowski,et al.  Structural representations: causally relevant and different from detectors , 2017, Biology & philosophy.

[98]  Amy Perfors,et al.  The structure of sequential effects. , 2016, Journal of experimental psychology. General.

[99]  R. Knight,et al.  Neural entrainment and network resonance in support of top-down guided attention. , 2019, Current opinion in psychology.

[100]  Koh Hosoda,et al.  Noise-modulated neural networks as an application of stochastic resonance , 2018, Neurocomputing.

[101]  Michael L. Anderson Beyond componential constitution in the brain: Starburst amacrine cells and enabling constraints , 2014 .

[102]  J. Kelso,et al.  Toward a Complementary Neuroscience: Metastable Coordination Dynamics of the Brain , 2009 .

[103]  W. H. Warren The dynamics of perception and action. , 2006, Psychological review.

[104]  Thomas A. Klein,et al.  DYNAMICS IN ACTION: INTENTIONAL BEHAVIOR AS A COMPLEX SYSTEM , 2003 .

[105]  VetscheraRudolf,et al.  Information representation in decision making , 2017 .

[106]  Stephen Grossberg,et al.  Adaptive Resonance Theory: How a brain learns to consciously attend, learn, and recognize a changing world , 2013, Neural Networks.

[107]  Viktor K. Jirsa,et al.  Symmetry Breaking in Space-Time Hierarchies Shapes Brain Dynamics and Behavior , 2017, Neuron.

[108]  R. M. Gaze Dynamic patterns , 1975, Nature.

[109]  D. Turcotte,et al.  Self-organized criticality , 1999 .

[110]  Brett R Fajen,et al.  Behavioral dynamics of steering, obstacle avoidance, and route selection. , 2003, Journal of experimental psychology. Human perception and performance.

[111]  Yvonne Herz,et al.  The Structure Of Science Problems In The Logic Of Scientific Explanation , 2016 .

[112]  M. Zochowski,et al.  The Resonance Frequency Shift, Pattern Formation, and Dynamical Network Reorganization via Sub-Threshold Input , 2011, PloS one.

[113]  J. A. Scott Kelso,et al.  Brain coordination dynamics: True and false faces of phase synchrony and metastability , 2009, Progress in Neurobiology.

[114]  William H. Warren,et al.  Optic flow is used to control human walking , 2001, Nature Neuroscience.

[115]  Audrey L. H. van der Meer,et al.  Seeing it coming: infants’ brain responses to looming danger , 2009, Naturwissenschaften.