Recursive Voronoi Diagrams

This paper introduces procedures involving the recursive construction of Voronoi diagrams and Delaunay tessellations. In such constructions, Voronoi and Delaunay concepts are used to tessellate an object space with respect to a given set of generators and then the construction is repeated every time with a new generator set, which comprises members selected from the previous generator set plus features of the current tessellation. Such constructions are shown to provide an integrating conceptual framework for a number of disparate procedures, as well as extending the existing functionality of the basic Voronoi and Delaunay procedures to variable spatial resolutions. Further, because they are shown to be fractal in nature, it is suggested that this characteristic can be exploited in the development of new strategies for spatial modelling.

[1]  Atsuyuki Okabe,et al.  Nearest Neighbourhood Operations with Generalized Voronoi Diagrams: A Review , 1994, Int. J. Geogr. Inf. Sci..

[2]  Atsuyuki Okabe,et al.  An Illusion of Spatial Hierarchy: Spatial Hierarchy in a Random Configuration , 1996 .

[3]  Olaf Kübler,et al.  Hierarchic Voronoi skeletons , 1995, Pattern Recognit..

[4]  Andrew U. Frank,et al.  Theories and Methods of Spatio-Temporal Reasoning in Geographic Space , 1992, Lecture Notes in Computer Science.

[5]  Michael Batty,et al.  Environment and Planning B: Planning and Design , 1996 .

[6]  Christopher M. Gold,et al.  The Meaning of "Neighbour" , 1992, Spatio-Temporal Reasoning.

[7]  James E. Storbeck Recursive Procedures for the Spatial Structuring of Christaller Hierarchies , 1990 .

[8]  M. Sabin,et al.  Hexahedral mesh generation by medial surface subdivision: Part I. Solids with convex edges , 1995 .

[9]  Barry Boots,et al.  Relaxing the nearest centre assumption in central place theory , 1999 .

[10]  David G. Kirkpatrick,et al.  Efficient computation of continuous skeletons , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[11]  C. Gold,et al.  A spatial data structure integrating GIS and simulation in a marine environment , 1995 .

[12]  Robin Sibson,et al.  Locally Equiangular Triangulations , 1978, Comput. J..

[13]  Joe N. Perry,et al.  Spatial analysis by distance indices , 1995 .

[14]  Wenzhong Shi,et al.  Development of Voronoi-based cellular automata -an integrated dynamic model for Geographical Information Systems , 2000, Int. J. Geogr. Inf. Sci..

[15]  Leila De Floriani,et al.  Delaunay-based representation of surfaces defined over arbitrarily shaped domains , 1985, Comput. Vis. Graph. Image Process..

[16]  T. Tam,et al.  2D finite element mesh generation by medial axis subdivision , 1991 .

[17]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[18]  C. Gold Problems with handling spatial data ― the Voronoi approach , 1991 .

[19]  M. Price,et al.  Hexahedral Mesh Generation by Medial Surface Subdivision: Part II. Solids with Flat and Concave Edges , 1997 .

[20]  D. T. Lee,et al.  Medial Axis Transformation of a Planar Shape , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Michael F. Goodchild,et al.  Data from the Deep: Implications for the GIS Community , 1997, Int. J. Geogr. Inf. Sci..

[22]  Ken Shirriff Generating fractals from Voronoi diagrams , 1993, Comput. Graph..

[23]  Leila De Floriani,et al.  Multiresolution models for topographic surface description , 1996, The Visual Computer.

[24]  Leila De Floriani,et al.  Hierarchical triangulation for multiresolution surface description , 1995, TOGS.

[25]  R. van de Weygaert,et al.  Clustering paradigms and multifractal measures , 1990 .

[26]  Nicholas M. Patrikalakis,et al.  Automated interrogation and adaptive subdivision of shape using medial axis transform , 1991 .

[27]  Leila De Floriani,et al.  A Hierarchical Triangle-Based Model for Terrain Description , 1992, Spatio-Temporal Reasoning.

[28]  Leila De Floriani,et al.  A pyramidal data structure for triangle-based surface description , 1989, IEEE Computer Graphics and Applications.

[29]  Markus Ilg,et al.  Voronoi skeletons: theory and applications , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[30]  Goze B. Bénié,et al.  Spatial analysis weighting algorithm using Voronoi diagrams , 2000, Int. J. Geogr. Inf. Sci..

[31]  Christopher M. Gold,et al.  Voronoi Methods in GIS , 1996, Algorithmic Foundations of Geographic Information Systems.

[32]  L. De Floriani A pyramidal data structure for triangle-based surface description , 1989, IEEE Computer Graphics and Applications.