Persistence of Network Synchronization under Nonidentical Coupling Functions

We investigate the persistence of synchronization in networks of diffusively coupled oscillators when the coupling functions are nonidentical. Under mild conditions, we uncover the influence of the network interaction structure on the mismatches of the coupling function. We show that Erd\"os-R\'enyi random graphs support large perturbations in the coupling function. In contrast scale-free graphs do not allow large perturbations in the coupling function, that is, as the network size n goes to infinity it forces the coupling functions to be identical.

[1]  Erik M. Bollt,et al.  Sufficient Conditions for Fast Switching Synchronization in Time-Varying Network Topologies , 2006, SIAM J. Appl. Dyn. Syst..

[2]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[3]  P. Lancaster,et al.  The theory of matrices : with applications , 1985 .

[4]  Tiago Pereira,et al.  Towards a theory for diffusive coupling functions allowing persistent synchronization , 2013, 1304.7679.

[5]  Aneta Stefanovska,et al.  Inference of time-evolving coupled dynamical systems in the presence of noise. , 2012, Physical review letters.

[6]  Henrik Jeldtoft Jensen,et al.  Connectivity-driven coherence in complex networks. , 2013, Physical review letters.

[7]  Paul Erdös,et al.  On random graphs, I , 1959 .

[8]  J. A. Bondy,et al.  Graph Theory , 2008, Graduate Texts in Mathematics.

[9]  W. A. Coppel Dichotomies in Stability Theory , 1978 .

[10]  T. Carroll,et al.  MASTER STABILITY FUNCTIONS FOR SYNCHRONIZED COUPLED SYSTEMS , 1999 .

[11]  M. Viana What’s new on lorenz strange attractors? , 2000 .

[12]  Linyuan Lu,et al.  Complex Graphs and Networks (CBMS Regional Conference Series in Mathematics) , 2006 .

[13]  Aneta Stefanovska,et al.  Coupling functions in networks of oscillators , 2015 .

[14]  Jonathan E. Rubin,et al.  Synchronized Activity and Loss of Synchrony Among Heterogeneous Conditional Oscillators , 2002, SIAM J. Appl. Dyn. Syst..

[15]  Tamás F. Móri,et al.  The Maximum Degree of the Barabási–Albert Random Tree , 2005, Combinatorics, Probability and Computing.

[16]  C. Sparrow The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors , 1982 .