Fourier bounds and pseudorandom generators for product tests

We study the Fourier spectrum of functions f: {0, 1}mk → { -1, 0, 1} which can be written as a product of k Boolean functions fi on disjoint m-bit inputs. We prove that for every positive integer d, [EQUATION] Our upper bounds are tight up to a constant factor in the O(·). Our proof uses Schur-convexity, and builds on a new "level-d inequality" that bounds above [EQUATION] for any [0, 1]-valued function f in terms of its expectation, which may be of independent interest. As a result, we construct pseudorandom generators for such functions with seed length Õ(m + log(k/ε)), which is optimal up to polynomial factors in log m, log log k and log log(1/ε). Our generator in particular works for the well-studied class of combinatorial rectangles, where in addition we allow the bits to be read in any order. Even for this special case, previous generators have an extra Õ(log(1/ε)) factor in their seed lengths. We also extend our results to functions fi whose range is [-1, 1].

[1]  Michael A. Forbes,et al.  Pseudorandom Generators for Read-Once Branching Programs, in Any Order , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[2]  Nutan Limaye,et al.  The Coin Problem in Constant Depth: Sample Complexity and Parity Gates , 2018, Electron. Colloquium Comput. Complex..

[3]  Ryan O'Donnell,et al.  On the Fourier tails of bounded functions over the discrete cube , 2006, STOC '06.

[4]  Scott Aaronson,et al.  BQP and the polynomial hierarchy , 2009, STOC '10.

[5]  Periklis A. Papakonstantinou,et al.  Pseudorandomness for Read-Once Formulas , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[6]  Pooya Hatami,et al.  Near-optimal pseudorandom generators for constant-depth read-once formulas , 2018, Electron. Colloquium Comput. Complex..

[7]  Thomas Steinke,et al.  Pseudorandomness for Read-Once, Constant-Depth Circuits , 2015, ArXiv.

[8]  Parikshit Gopalan,et al.  Inequalities and tail bounds for elementary symmetric polynomial , 2014, Electron. Colloquium Comput. Complex..

[9]  Kazuyuki Amano,et al.  Bounds on the Size of Small Depth Circuits for Approximating Majority , 2009, ICALP.

[10]  Emanuele Viola,et al.  The Coin Problem for Product Tests , 2017, Electron. Colloquium Comput. Complex..

[11]  J. Steele The Cauchy–Schwarz Master Class: References , 2004 .

[12]  Chi-Jen Lu,et al.  Improved Pseudorandom Generators for Combinatorial Rectangles , 1998, Comb..

[13]  Emanuele Viola,et al.  Bounded independence plus noise fools products , 2016, Electron. Colloquium Comput. Complex..

[14]  Noam Nisan,et al.  Pseudorandom generators for space-bounded computation , 1992, Comb..

[15]  Rocco A. Servedio,et al.  Improved pseudorandom generators from pseudorandom multi-switching lemmas , 2019, APPROX-RANDOM.

[16]  Ryan O'Donnell,et al.  Analysis of Boolean Functions , 2014, ArXiv.

[17]  Emanuele Viola,et al.  Hardness amplification proofs require majority , 2008, SIAM J. Comput..

[18]  Thomas Steinke,et al.  Pseudorandomness for Regular Branching Programs via Fourier Analysis , 2013, APPROX-RANDOM.

[19]  Michael Ben-Or,et al.  A theorem on probabilistic constant depth Computations , 1984, STOC '84.

[20]  Alexander Russell,et al.  An Entropic Proof of Chang's Inequality , 2014, SIAM J. Discret. Math..

[21]  Avishay Tal,et al.  Degree and Sensitivity: tails of two distributions , 2016, Electron. Colloquium Comput. Complex..

[22]  Avishay Tal,et al.  Pseudorandom generators for width-3 branching programs , 2018, Electron. Colloquium Comput. Complex..

[23]  Avishay Tal,et al.  Pseudorandom Generators for Low-Sensitivity Functions , 2017, Electron. Colloquium Comput. Complex..

[24]  Leslie G. Valiant,et al.  Short Monotone Formulae for the Majority Function , 1984, J. Algorithms.

[25]  Mei-Chu Chang A polynomial bound in Freiman's theorem , 2002 .

[26]  Madhur Tulsiani,et al.  Improved Pseudorandom Generators for Depth 2 Circuits , 2010, APPROX-RANDOM.

[27]  Joshua Brody,et al.  The Coin Problem and Pseudorandomness for Branching Programs , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[28]  John P. Steinberger The Distinguishability of Product Distributions by Read-Once Branching Programs , 2013, 2013 IEEE Conference on Computational Complexity.

[29]  Aravind Srinivasan,et al.  Improved Algorithms via Approximations of Probability Distributions , 2000, J. Comput. Syst. Sci..

[30]  Emanuele Viola,et al.  More on bounded independence plus noise: Pseudorandom generators for read-once polynomials , 2017, Electron. Colloquium Comput. Complex..

[31]  Daniel M. Kane,et al.  Pseudorandomness via the Discrete Fourier Transform , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[32]  Thomas Watson Pseudorandom Generators for Combinatorial Checkerboards , 2011, Computational Complexity Conference.

[33]  Emanuele Viola On Approximate Majority and Probabilistic Time , 2009, computational complexity.

[34]  Luca Trevisan,et al.  Better Pseudorandom Generators from Milder Pseudorandom Restrictions , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[35]  Noam Nisan,et al.  Efficient approximation of product distributions , 1998, Random Struct. Algorithms.

[36]  Shachar Lovett,et al.  Pseudorandom generators from the second Fourier level and applications to AC0 with parity gates , 2018, Electron. Colloquium Comput. Complex..

[37]  Russell Impagliazzo,et al.  Pseudorandomness from Shrinkage , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[38]  Shachar Lovett,et al.  Pseudorandom Generators from Polarizing Random Walks , 2018, Electron. Colloquium Comput. Complex..

[39]  Thomas Steinke,et al.  Pseudorandomness and Fourier-Growth Bounds for Width-3 Branching Programs , 2014, Theory Comput..

[40]  Emanuele Viola,et al.  Randomness Buys Depth for Approximate Counting , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[41]  Moni Naor,et al.  Small-Bias Probability Spaces: Efficient Constructions and Applications , 1993, SIAM J. Comput..

[42]  Noam Nisan,et al.  Randomness is Linear in Space , 1996, J. Comput. Syst. Sci..

[43]  Y. Tong,et al.  Convex Functions, Partial Orderings, and Statistical Applications , 1992 .

[44]  Swastik Kopparty,et al.  Certifying Polynomials for AC 0 [ ⊕ ] Circuits , with Applications to Lower Bounds and Circuit Compression , 2012 .

[45]  János Komlós,et al.  Deterministic simulation in LOGSPACE , 1987, STOC.

[46]  Michael E. Saks,et al.  Discrepancy sets and pseudorandom generators for combinatorial rectangles , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[47]  Avishay Tal,et al.  Tight bounds on The Fourier Spectrum of AC0 , 2017, Electron. Colloquium Comput. Complex..

[48]  Yishay Mansour,et al.  An O(nlog log n) learning algorithm for DNF under the uniform distribution , 1992, COLT '92.

[49]  Avishay Tal,et al.  Improved pseudorandomness for unordered branching programs through local monotonicity , 2017, Electron. Colloquium Comput. Complex..

[50]  Guy Kindler,et al.  Quantitative relation between noise sensitivity and influences , 2010, Comb..

[51]  Avi Wigderson,et al.  Deterministic simulation of probabilistic constant depth circuits , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[52]  Ran Raz,et al.  Two Sides of the Coin Problem , 2014, APPROX-RANDOM.

[53]  Luca Trevisan,et al.  A Derandomized Switching Lemma and an Improved Derandomization of AC0 , 2013, 2013 IEEE Conference on Computational Complexity.

[54]  Michel Talagrand,et al.  How much are increasing sets positively correlated? , 1996, Comb..

[55]  Noam Nisan,et al.  Pseudorandomness for network algorithms , 1994, STOC '94.