AN ESTIMATE OF FUNDAMENTAL FREQUENCY USING PCC INTERPOLATION - COMPARATIVE ANALYSIS

This paper deals with the algorithm for an estimate of fundamental frequency, which is based on signal processing by window functions in time domain and parametric Cubic interpolation in frequential domain. In the second part of the paper, the results of the simulation of the algorithm for Catmull-Rom’s, Greville’s and Greville’s two-parametric kernel are presented. Taking MSE as a measure of the algorithm quality, optimal parameters of the selected kernel, selected kernel and a suitable window function are defined.

[1]  F. Hlawatsch,et al.  Linear and quadratic time-frequency signal representations , 1992, IEEE Signal Processing Magazine.

[2]  Preeti Rao,et al.  Speech formant frequency estimation: evaluating a nonstationary analysis method , 2000, Signal Process..

[3]  William J. Williams,et al.  Improved time-frequency representation of multicomponent signals using exponential kernels , 1989, IEEE Trans. Acoust. Speech Signal Process..

[4]  Yagyensh C. Pati,et al.  Analysis and synthesis of feedforward neural networks using discrete affine wavelet transformations , 1993, IEEE Trans. Neural Networks.

[5]  Thippur V. Sreenivas,et al.  Instantaneous frequency estimation using level-crossing information , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[6]  Thippur V. Sreenivas,et al.  Effect of interpolation on PWVD computation and instantaneous frequency estimation , 2004, Signal Process..

[7]  Francis Grenez,et al.  Time-frequency analysis and instantaneous frequency estimation using two-sided linear prediction , 2005, Signal Process..

[8]  Khaled H. Hamed,et al.  Time-frequency analysis , 2003 .

[9]  Hee Suk Pang Improved Fundamental Frequency Estimation Using Parametric Cubic Convolution , 2000 .

[10]  Robert A. Schowengerdt,et al.  Image reconstruction by parametric cubic convolution , 1982, Comput. Graph. Image Process..

[11]  Boualem Boashash,et al.  Estimating and interpreting the instantaneous frequency of a signal. II. A/lgorithms and applications , 1992, Proc. IEEE.

[12]  Michael Unser,et al.  A note on cubic convolution interpolation , 2003, IEEE Trans. Image Process..

[13]  Bumki Jeon Filtering of a dissonant frequency based on improved fundamental frequency estimation for speech enhancement , 2003 .

[14]  R. Keys Cubic convolution interpolation for digital image processing , 1981 .

[15]  Stephen A. Zahorian,et al.  Minimum mean square error spectral peak envelope estimation for automatic vowel classification , 2000, INTERSPEECH.

[16]  Petros Maragos,et al.  Energy separation in signal modulations with application to speech analysis , 1993, IEEE Trans. Signal Process..

[17]  Boualem Boashash,et al.  Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals , 1992, Proc. IEEE.

[18]  André Quinquis,et al.  Horizon Picking on Subbottom Profiles Using Multiresolution Analysis , 2001, Digit. Signal Process..

[19]  B.C. Lovell,et al.  The statistical performance of some instantaneous frequency estimators , 1992, IEEE Trans. Signal Process..

[20]  Boualem Boashash,et al.  Adaptive instantaneous frequency estimation of multicomponent FM signals using quadratic time-frequency distributions , 2002, IEEE Trans. Signal Process..

[21]  Braham Barkat,et al.  A high-resolution quadratic time-frequency distribution for multicomponent signals analysis , 2001, IEEE Trans. Signal Process..

[22]  Sangki Kang,et al.  Dissonant frequency filtering technique for improving perceptual quality of noisy speech and husky voice , 2004, Signal Process..

[23]  Soo-Ngee Koh,et al.  Fundamental frequency determination based on instantaneous frequency estimation , 1995, Signal Process..